Amyloid β-induced ER stress is enhanced under mitochondrial dysfunction conditions

ArticleinNeurobiology of aging 33(4):824.e5-16 · June 2011with27 Reads
Impact Factor: 5.01 · DOI: 10.1016/j.neurobiolaging.2011.04.011 · Source: PubMed

    Abstract

    Previously we reported that endoplasmic reticulum (ER)-mitochondria crosstalk is involved in amyloid-β (Aβ)-induced apoptosis. Now we show that mitochondrial dysfunction affects the ER stress response triggered by Aβ using cybrids that recreate the defect in mitochondrial cytochrome c oxidase (COX) activity detected in platelets from Alzheimer's disease (AD) patients. AD and control cybrids were treated with Aβ or classical ER stressors and the ER stress-mediated apoptotic cell death pathway was accessed. Upon treatment, we found increased glucose-regulated protein 78 (GRP78) levels and caspase-4 activation (ER stress markers) which were more pronounced in AD cybrids. Treated AD cybrids also exhibited decreased cell survival as well as increased caspase-3-like activity, poli-ADP-ribose-polymerase (PARP) levels and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells. Finally, we showed that Aβ-induced caspase-3 activation in both cybrid cell lines was prevented by dantrolene, thus implicating ER Ca(2+) release in ER stress-mediated apoptosis. Our results demonstrate that mitochondrial dysfunction occurring in AD patients due to COX inhibition potentiates cell susceptibility to Aβ-induced ER stress. This study further supports the close communication between ER and mitochondria during apoptosis in AD.