Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1

Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, UK.
The EMBO Journal (Impact Factor: 10.43). 06/2011; 30(15):3019-27. DOI: 10.1038/emboj.2011.216
Source: PubMed


Breast cancer is a heterogeneous disease and several distinct subtypes exist based on differential gene expression patterns. Molecular apocrine tumours were recently identified as an additional subgroup, characterised as oestrogen receptor negative and androgen receptor positive (ER- AR+), but with an expression profile resembling ER+ luminal breast cancer. One possible explanation for the apparent incongruity is that ER gene expression programmes could be recapitulated by AR. Using a cell line model of ER- AR+ molecular apocrine tumours (termed MDA-MB-453 cells), we map global AR binding events and find a binding profile that is similar to ER binding in breast cancer cells. We find that AR binding is a near-perfect subset of FoxA1 binding regions, a level of concordance never previously seen with a nuclear receptor. AR functionality is dependent on FoxA1, since silencing of FoxA1 inhibits AR binding, expression of the majority of the molecular apocrine gene signature and growth cell growth. These findings show that AR binds and regulates ER cis-regulatory elements in molecular apocrine tumours, resulting in a transcriptional programme reminiscent of ER-mediated transcription in luminal breast cancers.

Download full-text


Available from: Stewart MacArthur
  • Source
    • "FOXA1 is also a pioneer factor for AR DNA binding in prostate cancer cells and this function may be preserved in breast cancer expressing AR. An in vitro study confirmed this role of FoxA1 in ER-negative, AR-positive breast cancer cells[135]. FoxA1 guided AR binding to a sub-set of its binding sites and the silencing of FoxA1 abrogates this binding and negates the apocrine gene signature associated with AR in these cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Steroid Nuclear Receptors (SNRs) are transcription factors of the nuclear receptor super-family. Estrogen Receptor (ERα) is the best-studied and has a seminal role in the clinic both as a prognostic marker but also as a predictor of response to anti-estrogenic therapies. Progesterone Receptor (PR) is also used in the clinic but with a more debatable prognostic role and the role of the four other SNRs, ERβ, Androgen Receptor (AR), Glucocorticoid Receptor (GR) and Mineralocorticoid Receptor (MR), is starting only to be appreciated. ERα, but also to a certain degree the other SNRs, have been reported to be involved in virtually every cancer-enabling process, both promoting and impeding carcinogenesis. Epithelial-Mesenchymal Transition (EMT) and the reverse Mesenchymal Epithelial Transition (MET) are such carcinogenesis-enabling processes with important roles in invasion and metastasis initiation but also establishment of tumor in the metastatic site. EMT is governed by several signal transduction pathways culminating in core transcription factors of the process, such as Snail, Slug, ZEB1 and ZEB2, and Twist, among others. This paper will discuss direct regulation of these core transcription factors by SNRs in breast cancer. Interrogation of publicly available databases for binding sites of SNRs on promoters of core EMT factors will also be included in an attempt to fill gaps where other experimental data are not available.
    Preview · Article · Jan 2016 · Journal of Clinical Medicine
  • Source
    • "These preferred ARBs were similarly distributed to genomic elements as the shared ARBs; with the majority of the ARBs in all three groups residing in intergenic or intronic regions and only a very small proportion locating to the proximal promoter regions. These genomic distribution figures are similar to those of the ARBs recently reported from other prostate cancer cell lines (31,32,36,37). Moreover, ∼40% of PC-3 wtAR ARBs identified in this study overlap with those recently revealed in the VCaP cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection.
    Full-text · Article · Jun 2014 · Nucleic Acids Research
  • Source
    • "By contrast, in the apocrine breast cancer subtype- an ER negative tumor- the AR acts by binding to the same transcription factors as the ER does, mainly through FOXA1, leading to a luminal gene expression phenotype [8]. In this case the expression of AR is associated with worse prognosis [8]. Recently, using gene expression analyses TNBC has been classified in subtypes including one termed luminal androgen that was enriched in genes related to this pathway [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The androgen receptor (AR) plays a central role in the oncogenesis of different tumors, as is the case in prostate cancer. In triple negative breast cancer (TNBC) a gene expression classification has described different subgroups including a luminal androgen subtype. The AR can be controlled by several mechanisms like the activation of membrane tyrosine kinases and downstream signaling pathways. However little is known in TNBC about how the AR is modulated by these mechanisms and the potential therapeutic strategists to inhibit its expression. We used human samples to evaluate the expression of AR by western-blot and phospho-proteomic kinase arrays that recognize membrane tyrosine kinase receptors and downstream mediators. Western-blots in human cell lines were carried out to analyze the expression and activation of individual proteins. Drugs against these kinases in different conditions were used to measure the expression of the androgen receptor. PCR experiments were performed to assess changes in the AR gene after therapeutic modulation of these pathways. AR is present in a subset of TNBC and its expression correlates with activated membrane receptor kinases-EGFR and PDGFRbeta in human samples and cell lines. Inhibition of the PI3K/mTOR pathway in TNBC cell lines decreased notably the expression of the AR. Concomitant administration of the anti-androgen bicalutamide with the EGFR, PDGFRbeta and Erk1/2 inhibitors, decreased the amount of AR compared to each agent given alone, and had an additive anti-proliferative effect. Administration of dihydrotestosterone augmented the expression of AR that was not modified by the inhibition of the PI3K/mTOR or Erk1/2 pathways. AR expression was posttranscriptionally regulated by PI3K or Erk1/2 inhibition. Our results describe the expression of the AR in TNBC as a druggable target and further suggest the combination of bicalutamide with inhibitors of EGFR, PDGFRbeta or Erk1/2 for future development.
    Full-text · Article · Apr 2014 · BMC Cancer
Show more