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Abstract

The phenotypic state of the cell is commonly thought to be determined by the set of expressed genes. However, given the
apparent complexity of genetic networks, it remains open what processes stabilize a particular phenotypic state. Moreover,
it is not clear how unique is the mapping between the vector of expressed genes and the cell’s phenotypic state. To gain
insight on these issues, we study here the expression dynamics of metabolically essential genes in twin cell populations. We
show that two yeast cell populations derived from a single steady-state mother population and exhibiting a similar growth
phenotype in response to an environmental challenge, displayed diverse expression patterns of essential genes. The
observed diversity in the mean expression between populations could not result from stochastic cell-to-cell variability,
which would be averaged out in our large cell populations. Remarkably, within a population, sets of expressed genes
exhibited coherent dynamics over many generations. Thus, the emerging gene expression patterns resulted from collective
population dynamics. It suggests that in a wide range of biological contexts, gene expression reflects a self-organization
process coupled to population-environment dynamics.
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Introduction

Understanding the emergence and maintenance of stable

cellular phenotypes and the switching of phenotypes in response

to environmental changes is at the forefront of biological research

in diverse areas of study such as cancer and development. It is well

known that identical genotypes can develop into diverse

phenotypes. Moreover, isogenic cells in the same environment

may exhibit some degree of phenotypic variability [1,2,3,4,5,6,7]

and can even switch between two well-determined phenotypes

[8,9,10]. However, given the apparent complexity of genetic

networks, an open question is: what are the processes leading to

the stabilization of a particular phenotypic state of a cell—its

morphology, metabolism and function? Many years ago, Wad-

dington coined the concept of ‘‘epigenetic landscape’’, in an

attempt to construct a useful metaphor for the underlying complex

mechanism of genotype-to-phenotype transformation [11]. Wad-

dington proposed that ‘‘strategic’’ principles, beyond individual

molecular interactions, were required for bridging the gap

between the short-term physiological responses and the long-term

evolutionary processes and this, he believed, will come through

understanding the epigenetic landscapes underlying developmen-

tal processes (e.g., cell differentiation). Notwithstanding the

impressive progress in molecular biology over the last decades,

the strategic relation between the process of gene expression and

the emergence of specific phenotypes has remained elusive.

On the one hand it is commonly thought that the emergence of

a stable phenotype is the result of a programmed system, in which,

for a given genome and environment, a set of ‘‘instructions’’ for

the phenotype is instilled (via evolution) in the underlying genetic

regulatory circuits [12,13,14]; phenotypic variability is then the

result of unavoidable ‘‘noise’’. On the other hand, given the huge

combinatorial phase-space spanned by the gene-expression

degrees of freedom [15] and the significant levels of intracellular

and environmental fluctuations [10], it has been proposed that

stable phenotypic states emerge as attractors in the phase-space

determined by the concentrations of expressed proteins; given a

genetic network architecture (connectivity), the finite number of

attractors guarantees the stabilization of specific phenotypes by

dynamically directing the initial vector of expressed proteins into

one of its stable steady states [15]. This attractive concept, a

modern version of Waddington landscape metaphor, was

developed theoretically within the framework of specific models

and for certain classes of networks it was shown that attractors do

emerge naturally in the system, i.e. they are properties of the

network’s connectivity and structure [15,16]. However, many

questions related to the attractor idea remain open: what

intracellular processes do actually determine the stable attractors

and their basins of attraction [17,18]? Do these attractors reflect

the intrinsic dynamic response of genetic networks to environ-

mental signals? What is the level of degeneracy in the phase-space

of expressed genes? Do many different attractors result in similar

cell phenotypes? The experimental basis necessary to tackle these

key issues is still lacking [19]. In this paper we attempt to advance

our understanding on these matters by studying the relation

between the emergence of a stable phenotype in response to an

environmental switch and the underlying gene expression

dynamics.

Biological cells are history-determined systems, so understand-

ing their intrinsic dynamics requires us to discriminate between
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necessity and contingence, between inevitable and accidently-

instilled intracellular processes in evolution. Toward this end, we

have studied the gene expression response of cell populations

adapting to surmount a severe unforeseen challenge. Since it is

unlikely that genomic circuits are ‘‘pre-programmed’’ to respond

to any arbitrary novel perturbation, an unforeseen challenge has

the potential of exposing gene expression patterns beyond the

specific ones shaped by evolution [20,21,22]. Here, we utilize this

approach as an effective tool to probe the expression dynamics

underlying the emergence of a novel stable phenotypic state of the

cell. To gain further insight on the emerging dynamic patterns of

expression we study for comparison, ‘‘wild-type’’ cell populations

responding to a common environmental switch. The fascinating

process of adaptation to a severe unforeseen challenge was

discussed in our previous publications [20,21,23] and is not the

focus of the current paper. This setting of populations adapting to

a challenge however, provides us with an effective model system to

study long-term population expression dynamics throughout

phenotypic changes that were unlikely to be ‘‘pre-programmed’’

into the cellular regulatory system.

Experiments were performed on unicellular yeast cells in which

the essential gene HIS3 from the histidine biosynthesis pathway

was detached from its natural regulatory system and was placed

under the exclusive regulation of the GAL system responsible for

galactose utilization [21]. ‘‘Wild-type’’ cells with identical genomic

background but deleted of the gene HIS3 were used for

comparison. The arbitrary HIS3 rewiring, linking the foreign

histidine and GAL systems, was shown to be stressful and

challenging by creating incompatibilities in gene expression [20].

In particular, a switch from a galactose-based to a glucose-based,

histidine-lacking medium presented a severe unforeseen challenge

to the cells since the GAL system and the GAL-controlled HIS3

were initially strongly repressed in glucose. Note that cells deleted

of HIS3 could not survive in a medium lacking histidine [21].

Recently, we have shown that a cell population carrying this GAL-

HIS3 rewired genome could rapidly adapt (within ,10 genera-

tions) to grow competitively in this medium despite the strong

initial repression of HIS3 [21]. Similar adaptation of genome-

rewired cells to glucose was shown for different culture techniques:

chemostats, batch cultures as well as for cells grown on agar plates

[21,23]. Once established, the adapted state had been propagated

stably for hundreds of generations. Our previous work showed that

the inherited adaptation was not due to selection; every cell in the

population had, in principle, the potential ability to adapt [23].

Indeed, we have shown that the adaptation was due to a response

of many individual cells to the glucose medium and not due to

selection of rare advantageous phenotypes.

Intriguingly, underlying the adaptation process was a global re-

organization of gene regulation. We have previously shown that

the adapting cell populations exhibited genome-wide expression

dynamics involving a sizable fraction of the genome and presented

strong correlations between genes across functional modules [20].

These results revealed that co-expression does not necessarily

imply co-functionality. Moreover, the observed crosstalk between

functional modules presumably played an important role in

enabling the emergence of a proper metabolic state. We also

observed the simultaneous induction and repression response of

genes residing within the same functional metabolic module. Thus,

co-functionality does not necessarily imply co-expression and there

is no simple connection between transcriptional patterns and

metabolism. Importantly, the global gene expression response was

found to be non-reproducible between repeated experiments that

nevertheless showed similar population growth dynamics and

metabolism [20]. This is a surprising result, since the irreproduc-

ibility in expression patterns was global and spanned the entire set

of metabolic genes participating in the emergence and mainte-

nance of a stable adapted growth phenotype. These results

indicate that a spectrum of different gene expression patterns can

potentially arise in populations under the same experimental

conditions.

Gene expression response and its relation to the phenotypic cell

state depend both on the environment and the history of the

population. Thus, it is difficult to exclude the possibility that the

variability in gene expression, even between isogenic populations

grown in the same environment, results from their different

histories. In this paper we overcome this problem by an

experimental approach that enabled us to probe the gene

expression patterns underlying phenotypic order through studies

of the population dynamics while controlling for environmental

conditions and population history. To compare the dynamics of

gene expression between populations with identical histories, we

developed a novel experimental setup in which two populations

with a joint history could be separated at a defined time point and

examined under identical environmental conditions. Our genome-

rewired cell populations were grown in chemostats under severely

challenging conditions in which cells fiercely competed for limited

resources. Thus, the relevant phenotype that integrates essential

metabolic functions was that of growth rate and proliferation and

this phenotype was highly constrained for the adapting cells in our

experiments.

The results of the present paper advance our previous work in

two important aspects. First, we show here that chemostat

populations with identical histories nevertheless demonstrated

variable expression dynamics of essential genes. Second, by

utilizing high temporal resolution, low-noise gene expression

measurements, the set of experiments presented here show that the

observed variable gene expression patterns were not due to cellular

‘‘noise’’. Rather, these patterns of expression reflected collective

dynamics resulting from synchronization of the expression response

of the cells within the population. Thus, the population itself was

the proper level of organization determining the cellular gene

expression response via its collective dynamics. We demonstrated

the generality of this mechanism by showing collective dynamics of

gene expression also for ‘‘wild-type’’ cells.

Results

Response dynamics of rewired cell populations
To construct two populations with the same history, two

identical chemostats, initiated from a single clone of GAL-HIS3

rewired cells, were coupled via an external pump so that their cell

content was mixed at a rate much faster than their dilution rate

(see Methods). A steady state was first stabilized in galactose for

these coupled chemostats, after which the mixing of cells between

them was stopped, they were decoupled so each one contained its

own isolated population, and their common feeding medium was

switched to glucose. Thus, after decoupling, the initial single

galactose steady-state population was separated into two ‘‘twin’’

populations, allowing comparison of their separate responses to

the medium switch into glucose. Note that both chemostats were

fed from the same source of medium which provided identical

feedings for the twin populations. Since the mixing of cells between

the coupled chemostats prior to the switch to glucose was much

faster than their dilution rates, as long as they were coupled they

effectively contained a single population as the fast mixing caused

the same cells to pass several times back and forth between the

reactors before being diluted out. The cell density in the

chemostat, in particular during the epoch of cell adaptation, is a
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sensitive function of the integrated metabolic reactions contribut-

ing to growth and proliferation [21,24] and thus, served as a

measure for the average phenotype of the cells.

Fig. 1a shows the cell density as a function of time following the

switch from galactose to glucose (t = 0; after decoupling of the twin

chemostats), for two pairs of twin populations. The growth

dynamics were similar in all cases and were composed of four

distinct phases [21]: (I) an exponential increase in cell density,

followed by (II) a sharp exponential decline in density which then,

(III) turned again into an exponential increase and finally, (IV)

stabilized at a new steady state. Twin chemostats exhibited higher

similarity in phase II than populations from separate experiments.

Phase II is crucial, since as we have shown before, cells became

fully adapted to grow on glucose during this phase [23]. The most

significant variation between populations developed in phase III—

the recovery of the already adapted cells to the chemostat steady

state condition, but eventually all populations stabilized at

approximately the same steady-state cell density. Thus, the

population dynamics were weakly history-dependent but the

dispersion between the population-average metabolic states was

minor. Note in Fig. 1a that the metabolic response of the twin

populations during phase II was identical, which was not the case

between populations with different histories. This proves that any

putative small differences between the reactors, if existent had a

negligible effect on the metabolism and the population dynamics.

As was shown in detail in [21] there was a significant population

growth and cell division during phase II, allowing eventually

population adaptation to glucose. The decline in cell density along

this phase, reflects an average cell growth-rate lower than the

chemostat dilution rate and not merely dying cells. This was

manifested in an exponential decline slower than the chemostat

dilution rate and was also verified by direct microscopy imaging of

cells along this phase [21].

Given their identical history and similar metabolism, how

similar are the populations gene expression dynamics? We

measured the transcriptional expression dynamics in conjunction

with the growth dynamics at high temporal resolution in parallel

populations sharing an identical history. Expression at the level of

mRNA molecules (transcription) served as a proxy to the

regulatory dynamics. Fig. 1b depicts in a color-coded raster plot

the normalized mRNA profiles of these populations, which include

18 genes belonging to four different metabolic groups: GAL genes

(plus HIS3), Histidine, Purine and Glycolysis pathways. These

genes were chosen since under our experimental conditions,

together with HIS3, they were absolutely essential. Outside of the

GAL system which responds by strong repression to the switch

into glucose, these metabolic groups are not weak factors in

glucose metabolism [25,26,27]. Correspondingly, these genes were

found to respond strongly in our previous genome-wide measure-

ments of adapting rewired cell popolutions [20]. Cell growth is

thought to be a sensitive function of the expression of metabolic

genes participating in the relevant biochemical modules [28].

Thus, under our experimental conditions and in particular during

adaptation to a severe challenge, one expects that the level of

expression of these metabolic genes would be constrained by the

cellular metabolic requirements. Common to all populations was

the emergence of activity peaks within phase II, long after the

transition to glucose (,50 hrs ,10 chemostat-dilution genera-

tions). Additional activity peaks appeared at later times. These

peaks of activity were significant: these responses were much larger

than the measurement errors (see below detailed analysis of the

responses).

Two features in the data deserve particular attention: first,

consistent with our previous genome-wide measurements [20],

each of the populations developed its own unique expression

pattern. In particular, both pairs of twin populations that shared

identical history and experienced identical external conditions

displayed significantly different patterns of expression. This

intriguing result shows that identical histories did not guarantee

similar population-average expression patterns, despite the

similarity in population growth dynamics. Second, the relaxation

time of an expression peak was much longer than the cell

generation time. As such, the activity peaks emerging in

populations of 108–109 cells, ,10 chemostat-dilution generations

after the medium switch perturbation must be an outcome of

collective dynamics requiring some sort of coupling between the cells;

stochastic cell-to-cell fluctuations would be averaged-out in such

large populations. Note that the long time-gap between the

medium switch into glucose and the emergence of the expressions

Figure 1. Phenotypes and gene expression profiles. (a) Cell
density (OD at 600 nm) as a function of time for two pairs of twin
chemostats with populations of rewired cells (Ia-black and Ib-red are
twin populations and so are IIa-blue and IIb-green). The histidine-
lacking medium was switched from galactose to glucose as a sole
carbon source at t = 0, leaving all other nutrients the same. A steady
state typical of galactose metabolism was first established as a single
population for each pair of twin chemostats which were decoupled
prior to this medium switch into glucose. Note the y-axis logarithmic
scale. Different phases of the dynamics are marked I–IV. (b) Color-coded
raster plot of the mRNA expression profiles: Ia–Ib and IIa–IIb mark the
same twin populations as in (a). The expression levels were measured
for 18 genes belonging to different metabolic functional modules (see
Methods for list of genes at the same order of appearance as in the
figure for each population, starting with HIS3 as the first gene from the
bottom). The measured expression levels were normalized for each
gene to zero mean and unit standard deviation across its entire time
profile. The color-coded profiles are cubic-spline interpolations of the
measured data points shown in Fig. 2. Bar - 10 chemostat-dilution
generations.
doi:10.1371/journal.pone.0020530.g001
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activity peaks (,50 hrs), means that the latter was not a direct

response to the environmental perturbation but rather reflected

population dynamics. Moreover, the broad expression peaks

spanned more than an order of magnitude in cell density without

losing phase coherency. Since cells exhibited significant growth

during phase II [21], these expression dynamics required a high

degree of coherency during cell division, preserving the correlated

dynamics along generations.

Fig. 2 compares the normalized expression profiles of the genes

according to their different functional groups between the four

populations (un-normalized profiles are shown in Fig. S1). Note

that genes belonging to the same functional group may exhibit

different dynamics [20]. In particular, the rewired HIS3 gene

might or might not exhibit similar dynamics to the GAL genes

(Fig. 2, left column). Higher resolution measurements (Fig. S2),

revealed possible higher frequency modes but basically retained

the main features observed in Fig. 2. Neighboring time points

measured from cells extracted separately from the chemostat,

show that measurement errors were insignificant compared to the

measured activity peaks; error analysis using bootstrap resampling

is presented below. Repeated measurements assessing the errors

arising from the real-time PCR technique itself are presented in

Fig. S3, showing that technical replicates exhibited negligible

errors.

Correlations within and between populations
To quantify the inter-gene correlations in expression dynamics,

Fig. 3 shows the pair-wise correlation coefficients between all

measured genes. The Pearson correlation coefficient for each pair

of genes, within and between populations was computed as the

zero-lag normalized covariance values of the measured expression

profiles over the entire set of measured time points shown in Fig. 2

(see Methods). We found significant inter-gene correlations within

each population. Inter-population correlations were also signifi-

cant (off-diagonal elements), but weaker than the intra-population

ones (near-diagonal elements). Clearly, correlations were not

necessarily higher between twin populations compared to

populations with different histories. The stability of the gene

Figure 2. Expression profiles. The normalized mRNA expression levels for the four populations of Fig. 1 (each row is a different population as
marked). The same genes shown in Fig. 1b were separated by their functional annotation groups (different columns): GAL genes plus HIS3 (Left
column, the rewired HIS3 gene is in cyan), Histidine pathway (second column from left), Purine pathway (third column from left) and Glycolysis (right
column) (see Methods for the list of genes). The measured mRNA profile for each gene (relative to the value of ACT1 at that time point) were
normalized as in Fig. 1b, by subtracting the mean value and dividing by the standard deviation; mean and standard deviation were computed over
the entire measurement period. The lines are cubic-spline interpolations of the data points. The medium was switched from galactose to glucose at
t = 0. Bar - 10 chemostat-dilution generations.
doi:10.1371/journal.pone.0020530.g002
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expression patterns over time is apparent from the significant

intra-population correlations. This stability also testifies to the

stability of our measurement setup. This is consistent with our

previous results discussed in [20] showing that the global patterns

of expression were stable in our chemostat setups over hundreds of

hours (.50 generations).

We used bootstrap resampling to further characterize the

correlations and their statistical significance for each individual

gene pair, within and between populations. Figs. 4a–f show the

correlation coefficients between a gene in a given population and

the same gene in all other three populations, computed from the

bootstrap resampling data (see Methods). The bootstrap analysis

verified that there were significant correlations between popula-

tions for some genes but not for others and even anti-correlations

between populations for some of the genes. Moreover, it shows

that beyond errors, twin populations (Fig. 4 left column; a and d)

did not necessarily exhibit higher correlations than populations

with no common history. As a control, Fig. S4a shows similar

patterns in the correlation coefficients matrix for one pair of twin

chemostats measured at higher temporal resolution (expression

profiles shown in Fig. S2).

Measurements on mRNA samples extracted from cells collected

from the chemostat at neighboring time points to the ones

presented in Fig. 2, is a way to estimate the errors between

‘‘biological replicates’’. Given the inherent irreproducibility of

expression patterns between repeated chemostats, this was the only

practical way of estimating the errors arising in biological

replicates. Fig. S4b compares the correlation coefficients between

a gene in population Ia and the same gene in population Ib using

bootstrap resampling data based on the expression profiles of Fig. 2

(the same as in Fig. 4a; red) and the ones based on the higher

resolution profiles which include the extra neighboring time points

of Fig. S2 (black). The two sets of data exhibited similar results and

Figure 3. Correlation coefficient matrix. The Pearson correlation
coefficient between the mRNA time profiles shown in Fig. 1b,
computed for all pair of genes in the four populations (see Methods
for the definition and computation of the correlation coefficient). For
each gene-pair, the correlation coefficient is the result of averaging over
the entire period shown in Fig. 1. The correlation patterns are
insensitive to the averaging time interval. Randomly-shuffled surrogate
profiles showed zero correlation coefficients. The order of genes for
each population is the same as in Fig. 1b. Near-diagonal pixels depict
correlation coefficients within populations, while off-diagonal pixels are
between populations (populations marked as in Fig. 1).
doi:10.1371/journal.pone.0020530.g003

Figure 4. Bootstrap correlation coefficients across populations. Mean and standard deviations of correlation coefficients computed between
a given gene in one population and the same gene in another population. Bootstrap resampling (see Methods) was used to compute the mean and
standard deviation (error bars) of the correlation coefficients for genes between populations: (a) Ia and Ib, (b) Ia and IIa, (c) Ia and IIb, (d) IIa and IIb, (e)
Ib and IIa and (f) Ib and IIb. Note that (a) and (d) show the correlations between twin populations. The gene number on the x-axis is at the same order
as in Fig. 1b and corresponding to the list presented in Methods.
doi:10.1371/journal.pone.0020530.g004
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similar errors and thus sampling the population expression

dynamics at more time points would not affect our conclusions.

Bootstrap resampling also allowed us to assess the mean correlation

coefficients across all genes within and between populations, taking

into account errors (see Methods). Figs. 5a–d show the mean

correlation coefficients between a gene (whose number is depicted

on the x-axis ) from a given population: (a) Ia (black), (b) Ib (red), (c)

IIa (blue), and (d) IIb (green), and all genes from the other

populations, according to the specified color scheme. Note that a

curve with the same color as the plot-label represents the mean

correlation coefficient between a given gene and all other genes

within the same population. Fig. 5 clearly shows the emergence of

significant correlations for some of the genes and lack of correlations

for others. It also verifies the result apparent in Fig. 3; significant

correlations between some of the genes in different populations but

not necessarily stronger correlations between the twin populations

sharing a common history.

We finally analyzed the dynamic modes in the expression response

of the cell populations. Figs. 6a,b show the computed cross-

correlations as a function of time-lags, between a given gene whose

number labels the plot and all other genes labeled with higher

numbers (numbering order is the same as in Fig. 1b and the detail list

in the Methods) within the population, for populations Ia and Ib,

respectively. The plots include the autocorrelations (shown in the

same color as the plot-label). Fig. S5 shows similar long-term

correlations for the inter-populations cross-correlations. The data

show significant correlations at long time lags (.50 hrs ,10

chemostat-dilution generations), quantifying the coherency of the

expression dynamics over many cell generation times. Fig. 7

emphasizes the significance of these long-term correlations by showing

the mean correlation coefficients as a function of time-lags, obtained

by averaging the entire set of correlations in each time-lag, for the two

populations of Figs. 6a,b. It clearly shows long-term relaxations of the

zero-lag correlations as well as the emergence of significant peaks at

time-lags §50 hrs. Such coherency over many cell generations

suggests the involvement of underlying epigenetic processes.

Expression response of ‘‘wild-type’’ cell populations
For comparison, the population dynamics of ‘‘wild-type’’ cells

deleted of the gene HIS3, grown in a chemostat at identical

Figure 5. Mean correlation coefficients between all genes within and between populations. The bootstrap resampled data was used to
compute the mean correlation coefficients between a gene (corresponding to the number on the x-axis; numbering at the same order as in Fig. 1b
and according to the list presented in Methods) from a given population, and all other genes within the same population and between populations,
taking errors into account (see Methods). Each figure shows the correlation coefficients between a gene from population (a) Ia, (b) Ib, (c) IIa, and (d) IIb
and all the genes within and between populations according to the following colors: population Ia (black), population Ib (red), population IIa (blue),
and population IIb (green).
doi:10.1371/journal.pone.0020530.g005
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parameters as before and switched from galactose-based to

glucose-based histidine-containing medium, were measured.

Fig. 8a shows that the dynamics of two such populations (from

two separate experiments), following the switch from galactose to

glucose (t = 0), were significantly different from the ones emerging

for the genome-rewired cells. Indeed, in contrast to the complex

population growth dynamics of Fig. 1a, here the population cell

density exhibited a fast exponential increase from one steady-state

in galactose into a second, higher steady-state in glucose, since the

latter is a more efficient carbon source. Note the significant

differences between the dynamics of repeated populations which

nevertheless converged to similar glucose steady states. We noted

before that repeated chemostats with nominally identical param-

eters could stabilize at different galactose steady-state cell density

Figure 6. Cross correlation functions. The un-normalized cross correlation coefficient as a function of time-lags was computed between all the
genes of populations (a) Ia and (b) Ib. The computed cubic-spline interpolation profiles for the high resolution data set of Fig. S2, was used to
compute the cross correlations by direct summations (see Methods). The number in each plot is for a given gene (numbers the same order as in
Fig. 1b; see Methods) which is cross-correlated with all other genes with higher numbering-label. The autocorrelation curve has the same color as the
plot-number. The time-lags are measured in hrs, where 50 hrs correspond to ,10 chemostat-dilution generations. As a control, randomly shuffled
surrogate profiles showed flat correlation functions.
doi:10.1371/journal.pone.0020530.g006
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levels (see Fig. 2 in [23]). Fig. 8b shows that similar to the rewired

cells, ‘‘wild-type’’ cells also exhibited collective dynamics in the

expression of the measured genes, with significant oscillatory peaks

of activity some of which emerged long after the switch to glucose.

The two repeated populations exhibited significantly different

expression patterns. Fig. 9 shows the detailed profiles of expression

for the different genes in the two populations divided according to

their functional groups (compare to Fig. 2 for the rewired cells).

Note again that the patterns of expression exhibited multiple

modes and that not all the genes within a functional module

exhibited identical patterns. Some of the genes in one population

exhibited damped oscillatory modes of expression levels in direct

response to the medium switch, while some other genes exhibited

strong fluctuating dynamics. Damped oscillations might result

from de-phasing of cells that initially responded in synchrony to

the abrupt medium switch [29] but significant population-average

activity peaks emerging in such large populations (,109 cells) not

in direct response to the medium switch must result from

synchronization of the expression response between the cells.

Discussion

We have shown that each population of genome-rewired cells

developed a unique pattern of gene expression, reflecting the

collective population dynamics; an integrated outcome of

intracellular and intercellular processes connected through

transgeneration memory [30,31,32,33]. The emerging patterns

of expression of essential metabolic genes were significantly

different between twin populations as well as for populations with

non-jointed histories. A unique pattern of expression dynamics was

also observed for each population of ‘‘wild-type’’ cells. Significant

gene expression dynamics emerged also during periods of steady

growth and apparent steady-state cell density. Importantly, the

observed gene expression profiles for rewired as well as for ‘‘wild-

type’’ cells exhibited multimode dynamics where each mode

populated with a group of coherently responding genes from

different functional modules. This behavior is markedly different

from previously observed collective gene expression dynamics in

cell populations which showed a global ‘‘rigid-body’’ response in

which the entire genome oscillated due to metabolic oscillations

[34,35]. Higher statistics on populations would be required to

assess the universal aspects of the expression dynamics in adapting

populations and their actual relation to the adaptation process or

to the metabolic state of the cell. It is clear from the results

presented here that indeed the relationship between patterns of

expression of essential genes and the actual metabolic (phenotypic)

state of the population is complex. Deciphering the mapping

between dynamic patterns of expression and the metabolic state

requires the development of a technology allowing measurements

of high statistics on chemostat populations, which is not yet

available. Parallel measurements on a large number of twin

populations having identical histories will open the road to a

‘‘statistical mechanics’’ approach at the population level of

organization. We leave this fascinating issue for future research.

Figure 7. Mean cross-correlation coefficients. Based on the
correlation functions shown in Figs. 6a,b, the figure presents the mean
cross correlations as a function of time-lags. Each curve is the result of
averaging the cross-correlation coefficients (including autocorrelations)
over the entire set of gene pairs, for population Ia (blue) and population
Ib (red).
doi:10.1371/journal.pone.0020530.g007

Figure 8. Phenotypes and gene expression profiles for ‘‘wild-
type’’ cells. (a) Cell density (OD at 600 nm) as a function of time for
two repeated chemostat experiments with populations of ‘‘wild-type’’
cells deleted of HIS3. The histidine-containing medium was switched
from galactose to glucose as a sole carbon source at t = 0, leaving all
other nutrients the same. A steady state was first established in
galactose prior to this medium switch into glucose. Note the y-axis
logarithmic scale. (b) Color-coded raster plot of the mRNA expression
profiles for the two populations (i and ii) as in (a). The expression levels
were measured for 18 genes belonging to different metabolic
functional modules (see Methods for list of genes at the same order
of appearance as in the figure, starting with GFP under pGAL10 as the
first gene from the bottom). The measured expression levels were
normalized for each gene to zero mean and unit standard deviation
across its entire time profile. The color-coded profiles are cubic-spline
interpolations of the measured data points shown in Fig. 9. Bar - 10
chemostat-dilution generations.
doi:10.1371/journal.pone.0020530.g008
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In our experiments, the metabolic state of adapted rewired cells,

with the cell phenotype emerging at the end of phase II (see Fig. 1)

enabling them to grow stably in glucose, was shown to be stable

even through significant perturbations of the environment and

even through repeated cycles of galactose-glucose media changes

[21]. Thus, the growth phenotype for adapted cells in our

chemostat populations converged to a stable homeostatic state. In

light of the fact that the expression pattern was different in each

adapting population, what processes did then determine such a

stable phenotype of the cell? Similarly, ‘‘wild-type’’ populations

converged to similar steady state densities in glucose and hence to

similar metabolic phenotypes, in spite of the differences in their

patterns of expression. The flexibility in expression response shows

that tight regulation was not necessary for such stability and that

different time-dependent patterns of gene expression could lead to

similar phenotypic responses. In other words, the mapping from

gene expression to the phenotype is highly degenerate. Indeed, the

mapping between gene expression and a metabolic state is a

dynamical process sensitive to initial conditions [18,19,36], where

the former provides a non-specific envelope of response, an

infrastructure support enabling convergence in the metabolic

functional space. It emerges that gene expression should be

considered more as an ‘‘auxiliary tool’’ for the cell rather than as a

‘‘programmed’’ determinant process. The freedom in the gene

expression process however, did not reflect an intracellular

stochastic process [37]; cell-to-cell variability within populations

would be averaged-out in our measurements over such large

populations (containing typically around 109–1010 cells and at no

time smaller than ,107–108 cells). Thus, we conclude that the

process of gene expression and the mapping between the vector of

expressed genes and the cell phenotypic state are determined by

population processes rather than resulting solely from intracellular

mechanisms, such as the intrinsic response of genetic networks,

their structural connectivity and their coupling to other intracel-

lular processes. The population-average measurements shown in

this work could not exclude a possible subpopulation structure. For

example, it would be impossible to rule out at this stage, a general

heterogeneous temporal response of cells in the population (e.g.,

phenotypic switching between states at variable times). Such

variability in temporal response between cells would result in

variable population-average dynamic patterns. However, since the

emerging expression activity peaks were not in direct response to

the environmental switch and since the coherent gene activity

spanned many chemostat-dilution generations (.10), these

patterns of activity must involve stable trans-generation propaga-

tion and collective population dynamics. These dynamics could be

carried out by several large subpopulations, beyond single-cell

stochasticity. The existence of such subpopulations however, does

not affect our major conclusion and is left for future studies.

If the expression response indeed reflects population effects,

what then made each population unique? An expression pattern

that was coherent within a population but irreproducible between

populations suggests that a dynamic environment could play a

significant role in synchronizing and shaping the population-

average expression response. Indeed, the immediate environment

of the cells, in contrast to the nominal medium feeding the

chemostat which is identical for all the populations, is unique for

each population. We propose to think of the environment as a

dynamical entity coupled to the population dynamics itself and

serving as a common driving force of the cells, affecting the global

population expression response. Intercellular coupling through

direct signals such as diffusion of a small specific molecule can

cause cell synchronization, but such a response is typically sensitive

to cell density (e.g., ‘‘quorum-sensing’’ [38,39]). This scenario is

unlikely in our experiments, since the coherent response seems

independent of cell density (which as shown in Fig. 1 could vary by

two orders of magnitude without affecting the coherent expression

activity profiles). A more realistic possibility in our case is cell

coupling via common resources in the medium: although the

external feeding medium is identical for all populations, each of

the populations develops dynamically within the chemostat its own

unique environmental niche [40,41]. Even slight differences in

extraction of ingredients from the medium or secretion of

intracellular materials by the growing cells, can globally affect

the population expression dynamics. This hypothesis can in

principle be tested in future experiments, by mixing the

Figure 9. Normalized expression profiles for a ‘‘wild-type’’ strain. The normalized mRNA levels measured for cells deleted of the HIS3 gene
and grown in the same chemostat system as the rewired cells (medium supplied with histidine). The normalization is as in Fig. 8: The measured mRNA
profile for each gene (relative to the value of ACT1 at that time point) were normalized by subtracting the mean value and divided by the standard
deviation; mean and standard deviation computed over the entire time period measured. (a) Population i and (b) population ii, as in Fig. 8. The
medium was switched from galactose to glucose at t = 0. Bar: 10 chemostat-dilution generations.
doi:10.1371/journal.pone.0020530.g009
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extracellular media of two parallel adapting populations, each

medium conditioned by its original population before the mixing,

at critical stages of the dynamics and examining the changes in the

temporal expression profiles.

Finally, the picture arising from our experiments suggests that

gene expression is a self-organization process, in which the

intracellular degrees of freedom are coupled through the

environment to create a converging collective population dynam-

ics. Although rather speculative at this stage, we believe that this

behavior reflects a general organization principle. Cells are seldom

growing in isolation and thus in most biologically relevant

situations, the genotype-to-phenotype transition should be under-

stood in a population context with the environment as a coupled

dynamic variable [36,41,42]. It remains to be seen how general

this behavior is and its applicability to other biological phenom-

ena. A satisfactory theoretical framework for such a self-organizing

system is still lacking and remains a challenge at the forefront of

biophysics.

Materials and Methods

Strain and chemostat growth conditions
Experiments were carried out with the haploid yeast strain

YPH499 [Mata, ura3-52, lys2-801, ade2-101, trp1-D63, his3D200,

leu2D1] carrying the plasmid vector pESC-LEU (Stratagene)

containing the pGAL1-pGAL10 divergent promoter with HIS3

under pGAL1 [21]. his3D200 is a deletion that removed the entire

HIS3 coding region plus the upstream promoter region, including

the Gcn4 regulatory sequence. Cells were grown in homemade

chemostats [21] in synthetic dropout medium lacking histidine and

leucine with the appropriate amino-acid supplement and 2% of

either pure galactose or pure glucose as a sole carbon source.

Throughout the experiments, the sugar (either galactose or

glucose) was always in excess (maximal consumption of the cells

is 25% of the sugar fed). Medium (concentrations in g/l): 1.7 yeast

nitrogen base without amino-acids and ammonium sulfate, 5

ammonium sulfate, 1.4 amino-acids dropout powder (without

tryptophan, histidine, leucine and uracil; Sigma), 0.01 L-

tryptophan, 0.005 uracil. Growth in the chemostat was limited

by the concentration of the amino acid supplement. The control

‘‘wild-type’’ strain did not contain the HIS3 gene on the plasmid

and the medium was supplemented with histidine (0.005 g/l); all

the other chemostat parameters were the same as for the rewired

cells. Two identical chemostats were constructed and operated in

parallel. Feeding was done from the same source. The two

chemostats had a closed-loop line between them, allowing fast

mixing of the cells via a separate pump. Steady state in galactose

was established while mixing was done at a rate faster than the

chemostat dilution rate. This mixing line was decoupled prior to

the switch into glucose, but the feeding source stayed common

throughout the experiment. Each chemostat had its own online

measurement system [21] that was used to measure the optical

density (OD) of cells in the chemostat. Each chemostat also had its

own homemade cell collector [21] that was used to automatically

collect samples of cells from the chemostat at precise time points

along the experiment and instantaneously freeze them. These

samples were used for the real-time PCR measurements. The

chemostat generation time equals chemostat dilution time6ln2;

,5 hr.

mRNA measurements using real-time PCR
Total RNA was prepared from cells extracted from the

chemostats at precise time points, by phenol extraction followed

by cDNA preparation (oligo-d(T)16; TAQMAN-Reverse Tran-

scription Kit, Applied Biosystems). Real-time PCR measure-

ments were performed with AB 7700 (SYBR master mix, AB). A

set of designed primers (Primer Express, AB;) was verified to

work with uniform efficiency and led to the same quantitative

results by using calibrated genomic DNA [21]. Measured

amounts of ACT1 prepared by PCR served as a ruler. In all

measurements a non-template control for each of the primer

pairs resulted in at least two orders of magnitude lower signal.

All measurements were normalized by the ACT1 transcription

level measured in each sample as the other genes. Some of the

measurements were performed in duplicates in the same PCR

run and in most cases also repetitively in two separate PCR

measurements. Typical measurement errors are shown in Fig.

S3. In addition, measurement at time points close to each other

serve as biological replicates since they were done on mRNA

extracted from cells collected independently from the chemostat.

Maximal errors were less than 3% in duplicates at the same

PCR measurement and typically less than 15% between separate

PCR measurements or separate RNA extraction samples from

the same sample of cells. mRNA levels from 18 genes belonging

to four different functional groups were measured as follows

(gene order is identical to that numbered in all figures presented

in the text): GAL system: HIS3, GAL1, GAL2; Histidine pathway:

His4, His7, His5; Purine pathway: YND1, IMD4, IMD3, ADE1,

ADE12, ADE13, ADE17, ADE6; Glycolysis: CDC19, ENO2,

GPM1, ADH1.

The gene order for the ‘‘wild-type’’ cell measurements was

similar with HIS3 replaced with GFP, GAL10 added and ADE17

dropped out: GAL system: GFP, GAL1, GAL2, GAL10; Histidine

pathway: His4, His7, His5; Purine pathway: YND1, IMD4, IMD3,

ADE1, ADE12, ADE13, ADE6; Glycolysis: CDC19, ENO2, GPM1,

ADH1. The GFP was located on the pESC-LEU plasmid under the

pGAL10 promoter.

Correlations and Bootstrap analysis
All computations were done using Matlab (MathWorks Inc.).

The measured expression profiles over time were normalized for

each gene to zero mean and unit standard deviation; the mean and

standard deviation were computed for each gene from its entire

temporal profile.

The Pearson correlation coefficient is defined as rij~

(gi{mi)(gj{mj)

sisj

, where gi is the measured value of gene i and

mi is the expectation value averaged over the entire set of measured

time points, si is the standard deviation of this entire set of time

points for gene i and the bar denotes averaging over the entire set

of time points. j denotes another gene measured from cells

extracted from the same chemostat population as gene i or from a

different population.

We used bootstrap resampling in order to approximate the

distributions represented by the data and to compute statistics on

each sample. For each gene pair in the data, the correlation

coefficient was computed 1000 times by resampling the measured

data, using random sampling with replacement while preserving

the original number of data points. This bootstrap-produced data

was then used to compute the average correlation coefficients and

error-bars (standard deviations) for the correlations of a gene with

itself in another population as shown in Fig. 4 and Fig. S4b.

The bootstrap resampled data was also used to compute the

mean correlation coefficients between a gene i (equals the number

on the x-axis) from a given population, and all other genes j within

the same population and between populations, taking errors into

account. The mean correlation coefficients shown in Fig. 5, were
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computed by: ri~

P

j

hij=s2
ij

P

j

1=s2
ij

where hij is the average correlation

coefficient between gene i and gene j and s2
ij is the variance.

The cross correlation coefficients as a function of time-lags

shown in Fig. 6 and Fig. S5 were computed as follows. We

computed the cubic-spline interpolation, xn, from the original data

points measured along time for each gene, in order to smooth the

data. The un-normalized correlation coefficient at time lag m

was then computed by direct summation: Rij(m)~
PN{m{1

n~1

(xnzm)i(xn)j for m§0, and Rij({m) for mƒ0, for genes

i and j and N is the number of data points. We present un-

normalized estimates for the correlations in Fig. 6 and Fig. S5 to

illustrate the appearance of significant correlation peaks, compared to

possible trivial correlations arising from gene profiles lacking significant

dynamics. The normalized correlations show similar results.

Supporting Information

Figure S1 Un-normalized mRNA profiles. The measured

mRNA profiles for the same populations and functional groups as in

Fig. 2 main text, not normalized by the mean and standard deviation.

(TIF)

Figure S2 High resolution measurements. The normalized

mRNA profiles for the 18 genes for populations Ia and Ib from Fig. 1

main text measured at higher temporal resolution. The order of

genes is (from top) GAL plus HIS3 (cyan), histidine group, purine

group (divided arbitrarily to two subgroups for clarity) and glycolysis

group. The order is the same as that specified in the Methods. The

colors of the different gene profiles are the same as in Fig. 2 in the

main text. Note that the main activity peaks are the same but higher

frequency modes show up in the higher resolution data. These

measurements also serve as biological ‘‘replicates’’ for some of the

time points allowing us to assess the measurement errors.

(TIF)

Figure S3 Real-time PCR measurement errors. Some of

the mRNA-level measurements for two of the populations, Ia (left

panel) and Ib (right panel), were repeated to estimate the real-time

PCR measurement errors. The upper graphs show the mean

measured mRNA levels (normalized to ACT1) with their

corresponding error-bars (standard deviations) while the lower

graphs show the standard deviation over mean for the same data.

The genes measured are: HIS3, h2-h5 histidine group, p5-p9

purine group and g3-g5 glycolysis group. The order of genes is the

same as specified in the Methods.

(TIF)

Figure S4 a: Correlation coefficient matrix for higher
resolution measurements. The Pearson correlation coeffi-

cient between the mRNA time profiles shown in Fig. S2,

computed for all pair of genes for populations Ia and Ib of Fig. 1

main text. The correlation coefficients between genes within a

population are near-diagonal pixels while inter-population ones

are off-diagonal pixels. For each gene-pair the correlation

coefficient is the result of averaging the correlations over the

entire period shown in Fig. S2. b: Comparing the mean and error

of correlation coefficients of a gene between populations for the

high and lower resolution data. Mean and standard deviations of

correlation coefficients computed between a given gene in one

population and the same gene in another population. Bootstrap

resampling (see Methods) was used to compute the mean and

standard deviation (error bars) of the correlation coefficients for

genes between the twin populations: Ia and Ib, for: (a) the same

temporal resolution shown in Fig. 2 (red), and the higher

resolution data of Fig. S2 (black). The gene number on the x-

axis is at the same order as in Fig. 1b in the main text and

corresponding to the list presented in Methods. The measured data

points for each gene was resampled with replacement 1000 times.

(TIF)

Figure S5 Cross correlation functions between popula-
tions. The un-normalized cross correlation coefficient as a

function of time-lags was computed between all the genes of

population Ia and those of population Ib. The cubic-spline

interpolation profiles for the high resolution data of Fig. S2, was

used to compute the cross correlations by direct summations (see

Methods). The number in each box is for a given gene (numbers the

same order as in Fig. 1b in the main text; see Methods) which is

cross-correlated with all other genes. The autocorrelation curve

has the same color as the plot-number. The time-lags are

measured in hrs, where 50 hrs correspond to ,10 chemostat

generations. As a control, randomly shuffled surrogate profiles

showed flat correlation functions.

(TIF)
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