Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
Nano Letters (Impact Factor: 13.59). 06/2011; 11(8):3232-8. DOI: 10.1021/nl2014982
Source: PubMed


Flexible electronic and photonic devices have been demonstrated in the past decade, with significant promise in low-cost, light-weighted, transparent, biocompatible, and portable devices for a wide range of applications. Herein, we demonstrate a flexible metamaterial (Metaflex)-based photonic device operating in the visible-IR regime, which shows potential applications in high sensitivity strain, biological and chemical sensing. The metamaterial structure, consisting of split ring resonators (SRRs) of 30 nm thick Au or Ag, has been fabricated on poly(ethylene naphthalate) substrates with the least line width of ∼30 nm by electron beam lithography. The absorption resonances can be tuned from middle IR to visible range. The Ag U-shaped SRRs metamaterials exhibit an electric resonance of ∼542 nm and a magnetic resonance of ∼756 nm. Both the electric and magnetic resonance modes show highly sensitive responses to out-of-plane bending strain, surrounding dielectric media, and surface chemical environment. Due to the electric and magnetic field coupling, the magnetic response gives a sensitivity as high as 436 nm/RIU. Our Metaflex devices show superior responses with a shift of magnetic resonance of 4.5 nm/nM for nonspecific bovine serum albumin protein binding and 65 nm for a self-assembled monolayer of 2-naphthalenethiol, respectively, suggesting considerable promise in flexible and transparent photonic devices for chemical and biological sensing.

Download full-text


Available from: Dehui Li
  • Source
    • "Flexible photonic crystals123456789101112131415 based on soft matters like polymers with response in different spectral bands may be applied extensively in optoelectronic devices, sensors, and tunable optical filters16. When active materials like polymeric semiconductors are incorporated into flexible photonic crystals, lasers or light-emitting devices with large tuning dynamics may be achieved1718. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Flexible photonic crystals are attractive devices owing to their multifold tunable parameters additionally introduced by soft substrates or by nanostructured, nano-doped, or nano-embedded soft matters. This not only extends significantly the intrinsic functions of photonic crystals, but also facilitates easy integration of the photonic crystal device into various optoelectronic and sensing systems. So far, flexible metallic photonic structures have been constructed on micrometer scales with complex fabrication procedures. Much simpler and more reproducible methods are expected to achieve such metamaterials in large scales and at low costs. In address to these challenges, we developed a straightforward approach to create soft plasmonic photonic crystals consisting of gold nanolines arranged on stretchable substrates with nanoscale periods, centimeter-scale areas, and high reproducibility using annealed gold nanoparticle colloids.
    Full-text · Article · Feb 2014 · Scientific Reports
  • Source
    • "Gu et al. [102] reported a magnetic plasmonic metamaterial which was constructed with a metal ring-shaped disk array supported by a dielectric layer on a metal film for high sensitive refractive index sensing. Xu et al. [103] reported a flexible metamaterial (Metaflex)-based photonic device operating in the visible-IR regime, which showed potential applications in high sensitivity strain, biological and chemical sensing. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Metamaterials are artificial media structured on a size scale smaller than wavelength of external stimuli, and they can exhibit a strong localization and enhancement of fields, which may provide novel tools to significantly enhance the sensitivity and resolution of sensors, and open new degrees of freedom in sensing design aspect. This paper mainly presents the recent progress concerning metamaterials-based sensing, and detailedly reviews the principle, detecting process and sensitivity of three distinct types of sensors based on metamaterials, as well as their challenges and prospects. Moreover, the design guidelines for each sensor and its performance are compared and summarized.
    Full-text · Article · Dec 2012 · Sensors
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper intends to demonstrate the feasibility of a miniaturized multi-purpose metamaterial sensor that can be effectively used for chemical, biological and pressure sensing in microwave and terahertz applications. This novel sensor design makes use of the double-sided split ring resonator (DSRR) topology that is modified to have an additional sensing medium sandwiched between two identical broadside coupled SRR unit cells. The resonance frequency of the resulting DSRR sensor shifts as the dielectric permittivity or thickness of this interlayer medium changes in response to variations in an environmental parameter such as temperature, humidity, density, concentration or pressure. As a proof of concept study, both numerical and experimental results are presented with very good agreement for a multi-functional miniaturized metamaterial sensor prototype operating in X-band. Simulations for three different real-life scenarios are also presented for this sensor topology to demonstrate a moisture sensor, a density sensor and a temperature sensor with very good sensitivities where the interlayer medium is occupied by sawdust, silica aerogel and seawater, respectively.
    No preview · Article · Jan 2012 · Applied Physics A
Show more