Lu, Z. Q., Chen, H., Meng, Y. Z., Wang, Y., Xue, L., Zhi, S. C. et al. The tRNAMet 4435A>G mutation in the mitochondrial haplogroup G2a1 is responsible for maternally inherited hypertension in a Chinese pedigree. Eur. J. Hum. Genet. 19, 1181-1186

Emergercy Medical Department, The First Affiliated Hospital of Wenzhou Medical College, Zhejiang, China.
European journal of human genetics: EJHG (Impact Factor: 4.35). 06/2011; 19(11):1181-6. DOI: 10.1038/ejhg.2011.111
Source: PubMed


Mutations in mitochondrial DNA (mtDNA) have been associated with hypertension in several pedigrees with maternal inheritance. However, the pathophysiology of maternally inherited hypertension remains poorly understood. We reported here clinical, genetic evaluations and molecular analysis of mtDNA in a three-generation Han Chinese family with essential hypertension. Eight of 17 matrilineal relatives exhibited a wide range of severity in essential hypertension, whereas none of the offsprings of the affected father had hypertension. The age-at-onset of hypertension in the maternal kindred varied from 31 to 65 years, with an average of 52 years. Sequence analysis of mtDNA in this pedigree identified the known homoplasmic 4435A>G mutation, which is located at immediately 3' end to the anticodon, corresponding to the conventional position 37 of tRNA(Met), and 41 variants belonging to the Asian haplogroup G2a1. In contrast, the 4435A>G mutation occurred among mtDNA haplogroups B5a, D, M7a2 and J. The adenine (A37) at this position of tRNA(Met) is extraordinarily conserved from bacteria to human mitochondria. This modified A37 was shown to contribute to the high fidelity of codon recognition, structural formation and stabilization of functional tRNAs. However, 41 other mtDNA variants in this pedigree were the known polymorphisms. The occurrence of the 4435A>G mutation in two genetically unrelated families affected by hypertension indicates that this mutation is involved in hypertension. Our present investigations further supported our previous findings that the 4435A>G mutation acted as an inherited risk factor for the development of hypertension. Our findings will be helpful for counseling families of maternally inherited hypertension.

Download full-text


Available from: Min-Xin Guan
  • Source
    • "However, molecular pathogenesis of maternally inherited hypertension remains poorly understood. As the part of a genetic screening program for essential hypertension in the Chinese population [Chen et al., 2010; Li et al., 1999; Liu et al., 2009; Lu et al., 2011; Wang et al., 2011], we performed the clinical, genetic, molecular, and biochemical characterization of two Han Chinese families (WHP11 and WHP12) with maternally transmitted hypertension. Fourteen of 20 adult matrilineal relatives but none of affected fathers in two families exhibited variable severity and age-at-onset of hypertension. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here the clinical, genetic, molecular, and biochemical evaluations in two Han Chinese families with maternally inherited hypertension. Fourteen of 20 adult matrilineal relatives of these families exhibited a wide range of severity in hypertension, while none of offspring of affected fathers had hypertension. The age-at-onset of hypertension in matrilineal relatives varied from 37 years to 83 years, with an average of 55 and 66 years, respectively. Mutational analysis of their mitochondrial genomes identified the m.4353T>C mutation in the tRNA, in conjunction with the known m.593C>T mutation in the tRNA(Phe) and m.5553C>T mutation in the tRNA(Trp). Northern analysis revealed that m.4353T>C, m.593C>T and m.5553C>T mutations caused ∼66%, 65%, and 12% reductions in the steady-state level of tRNA(Gln), tRNA(Phe) and tRNA(Trp), respectively. An in vivo protein labeling analysis showed ∼35% reduction in the rate of mitochondrial translation in cells carrying these tRNA mutations. Impaired mitochondrial translation is apparently a primary contributor to the reduced rates of overall respiratory capacity, malate/glutamate-promoted respiration, succinate/glycerol-3-phosphate-promoted respiration, or N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate-promoted respiration and the increasing level of reactive oxygen species in the cells carrying these mtDNA mutations. These data demonstrate that mitochondrial dysfunction caused by mitochondrial tRNA mutations is associated with essential hypertension in these families.
    Full-text · Article · Aug 2012 · Human Mutation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We reported here clinical, genetic evaluations and molecular analysis of mitochondrial DNA (mtDNA) in two Han Chinese families carrying the known mitochondrial 12S rRNA A1555G mutation. In contrast with the previous data that hearing loss as a sole phenotype was present in the maternal lineage of other families carrying the A1555G mutation, matrilineal relatives among these two Chinese families exhibited both hearing loss and hypertension. Of 21 matrilineal relatives, 9 subjects exhibited both hearing loss and hypertension, 2 individuals suffered from only hypertension and 1 member had only hearing loss. The average age at onset of hypertension in the affected matrilineal relatives of these families was 60 and 46 years, respectively, whereas those of hearing loss in these two families were 33 and 55 years, respectively. Molecular analysis of their mtDNA identified distinct sets of variants belonging to the Eastern Asian haplogroup D5a. In contrast, the A1555G mutation occurred among other mtDNA haplogroups D, B, R, F, G, Y, M and N, respectively. Our data further support that the A1555G mutation is necessary but by itself insufficient to produce the clinical phenotype. The other modifiers are responsible for the phenotypic variability of matrilineal relatives within and among these families carrying the A1555G mutation. Our investigation provides the first evidence that the 12S rRNA A1555G mutation leads to both of hearing loss and hypertension. Thus, our findings may provide the new insights into the understanding of pathophysiology and valuable information for management and treatment of maternally inherited hearing loss and hypertension.
    Full-text · Article · Feb 2012 · European journal of human genetics: EJHG
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The long-term stress of high blood pressure levels increases the risk of a variety of macro- and microvascular complications of type 2 diabetes (T2D). The etiology of essential hypertension (EH) has been explored in depth, but the pathophysiology is multifactorial, complex, and poorly understood. Recent findings showed a role of inherited mutations in mitochondrial DNA (mtDNA) in maternally inherited forms of hypertension. However, an impact of somatic mtDNA mutations in the development of EH is significantly less investigated. In this study, we examined whether the level of heteroplasmy for the 15059G>A mutation in the mitochondrial cytochrome b gene is associated with EH in T2D. The heteroplasmy level in mtDNA isolated from blood of 189 diabetic participants randomly selected from general population (124 of whom had EH) was quantified using a real-time PCR. The 15059G>A heteroplasmy exceeding 39% was found to be significantly associated with a higher risk of EH (odds ratio 1.96; P (Fisher) 0.032). There is the first evidence reporting association between the mtDNA 15059G>A mutation heteroplasmy and EH in T2D.
    Full-text · Article · Jul 2012
Show more