Positive Fluid Balance Is Associated with Higher Mortality and Prolonged Mechanical Ventilation in Pediatric Patients with Acute Lung Injury

Division of Pediatric Critical Care, Children's Hospital and Research Center Oakland, 747 52nd Street, Oakland, CA 94609, USA.
Critical care research and practice 05/2011; 2011(2090-1305):854142. DOI: 10.1155/2011/854142
Source: PubMed


Introduction. We analyzed a database of 320 pediatric patients with acute lung injury (ALI), to test the hypothesis that positive fluid balance is associated with worse clinical outcomes in children with ALI. Methods. This is a post-hoc analysis of previously collected data. Cumulative fluid balance was analyzed in ml per kilogram per day for the first 72 hours after ALI while in the PICU. The primary outcome was mortality; the secondary outcome was ventilator-free days. Results. Positive fluid balance (in increments of 10 mL/kg/24 h) was associated with a significant increase in both mortality and prolonged duration of mechanical ventilation, independent of the presence of multiple organ system failure and the extent of oxygenation defect. These relationships remained unchanged when the subgroup of patients with septic shock (n = 39) were excluded. Conclusions. Persistently positive fluid balance may be deleterious to pediatric patients with ALI. A confirmatory, prospective randomized controlled trial of fluid management in pediatric patients with ALI is warranted.

Download full-text


Available from: Ginny Gildengorin
  • [Show abstract] [Hide abstract]
    ABSTRACT: Postoperative organ failure is a challenging disease process that is better prevented than treated. Providers should use close observation and clinical judgment, and checklists of best practices to minimize the risk of organ failure in their patients. The treatment of multiorgan dysfunction syndrome (MODS) generally remains supportive, outside of rapid initiation of source control (when appropriate) and targeted antibiotic therapy. More specific treatments may be developed as the complex pathophysiology of MODS is better understood and more homogenous patient populations are selected for study.
    No preview · Article · Apr 2012 · Surgical Clinics of North America
  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: In the Fluid and Catheter Treatment Trial (NCT00281268), adults with acute lung injury randomized to a conservative vs. liberal fluid management protocol had increased days alive and free of mechanical ventilator support (ventilator-free days). Recruiting sufficient children with acute lung injury into a pediatric trial is challenging. A Bayesian statistical approach relies on the adult trial for the a priori effect estimate, requiring fewer patients. Preparing for a Bayesian pediatric trial mirroring the Fluid and Catheter Treatment Trial, we aimed to: 1) identify an inverse association between fluid balance and ventilator-free days; and 2) determine if fluid balance over time is more similar to adults in the Fluid and Catheter Treatment Trial liberal or conservative arms. DESIGN: Multicentered retrospective cohort study. SETTING: Five pediatric intensive care units. PATIENTS: Mechanically ventilated children (age>/=1 month toyrs) with acute lung injury admitted in 2007-2010. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Fluid intake, output, and net fluid balance were collected on days 1-7 in 168 children with acute lung injury (median age 3 yrs, median PaO2/FIO2 138) and weight-adjusted (mL/kg). Using multivariable linear regression to adjust for age, gender, race, admission day illness severity, PaO2/FIO2, and vasopressor use, increasing cumulative fluid balance (mL/kg) on day 3 was associated with fewer ventilator-free days (p=.02). Adjusted for weight, daily fluid balance on days 1-3 and cumulative fluid balance on days 1-7 were higher in these children compared to adults in the Fluid and Catheter Treatment Trial conservative arm (p
    No preview · Article · Jul 2012 · Critical care medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute kidney injury (AKI) is a syndrome with a multitude of causes and is associated with high mortality and a permanent loss of renal function. Our current understanding of the most common causes of AKI is limited, and thus a silver bullet therapy remains elusive. A change in the approach to AKI that shifts away from the primary composite endpoint of death/dialysis, and instead focuses on improving survival and mitigating permanent renal damage, is likely to be more fruitful. We suggest that the current approach of augmenting renal function by increasing the renal blood flow or glomerular filtration rate during AKI may actually worsen outcomes. Analogous to the approach towards adult respiratory distress syndrome that limits ventilator-induced lung injury, we propose the concept of permissive hypofiltration. The primary goals of this approach are: resting the kidney by providing early renal replacement therapy, avoiding the potentially injurious adverse events that occur during AKI (for example, fluid overload, hypophosphatemia, hypothermia, and so forth), and initiating therapies focused on improving survival and mitigating permanent loss of kidney function.
    Full-text · Article · Jul 2012 · Critical care (London, England)
Show more