Low visual information-processing speed and attention are predictors of fatigue in elementary and junior high school students

Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Osaka City, Osaka 545-8585, Japan.
Behavioral and Brain Functions (Impact Factor: 1.97). 06/2011; 7(1):20. DOI: 10.1186/1744-9081-7-20
Source: PubMed


Fatigue is a common complaint among elementary and junior high school students, and is known to be associated with reduced academic performance. Recently, we demonstrated that fatigue was correlated with decreased cognitive function in these students. However, no studies have identified cognitive predictors of fatigue. Therefore, we attempted to determine independent cognitive predictors of fatigue in these students.
We performed a prospective cohort study. One hundred and forty-two elementary and junior high school students without fatigue participated. They completed a variety of paper-and-pencil tests, including list learning and list recall tests, kana pick-out test, semantic fluency test, figure copying test, digit span forward test, and symbol digit modalities test. The participants also completed computerized cognitive tests (tasks A to E on the modified advanced trail making test). These cognitive tests were used to evaluate motor- and information-processing speed, immediate and delayed memory function, auditory and visual attention, divided and switching attention, retrieval of learned material, and spatial construction. One year after the tests, a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale) was administered to all the participants.
After the follow-up period, we confirmed 40 cases of fatigue among 118 students. In multivariate logistic regression analyses adjusted for grades and gender, poorer performance on visual information-processing speed and attention tasks was associated with increased risk of fatigue.
Reduced visual information-processing speed and poor attention are independent predictors of fatigue in elementary and junior high school students.

Download full-text


Available from: Yoshihito Shigihara

  • No preview · Article · Dec 2007 · Neuroscience Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kana Pick-out Test (KPT), which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out) and continuous (reading) dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC), and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. We used functional magnetic resonance imaging (fMRI) to evaluate changes in the blood oxygenation level-dependent (BOLD) signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels) and compared it to its single task components (reading or vowel pick-out alone). Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46) was present only in the KPT. Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance.
    Full-text · Article · May 2012 · Behavioral and Brain Functions
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KILLEEN, P.R., V.A. Russell and J.A. Sergeant. A behavioral neuroenergetics theory of ADHD. NEUROSCI BIOBEHAV REV 37(4) XXX_XXX 2013- Energetic insufficiency in neurons due to inadequate lactate supply is implicated in several neuropathologies, including attention-deficit/hyperactivity disorder (ADHD). By formalizing the mechanism and implications of such constraints on function, the behavioral Neuroenergetics Theory (NeT) predicts the results of many neuropsychological tasks involving individuals with ADHD and kindred dysfunctions, and entails many novel predictions. The associated diffusion model predicts that response times will follow a mixture of Wald distributions from the attentive state, and ex-Wald distributions after attentional lapses. It is inferred from the model that ADHD participants can bring only 75-85% of the neurocognitive energy to bear on tasks, and allocate only about 85% of the cognitive resources of comparison groups. Parameters derived from the model in specific tasks predict performance in other tasks, and in clinical conditions often associated with ADHD. The primary action of therapeutic stimulants is the increase they cause in norepinephrine, which activates glial adrenoceptors, increasing the release of lactate from astrocytes to fuel depleted neurons. The theory is aligned with other approaches and integrated with more general theories of ADHD. Therapeutic implications are explored.
    Full-text · Article · Feb 2013 · Neuroscience & Biobehavioral Reviews
Show more