Article

Bergamaschi A, Katzenellenbogen BSTamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene 31: 39-47

Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine at Urbana-Champaign, Urbana, IL, USA.
Oncogene (Impact Factor: 8.46). 06/2011; 31(1):39-47. DOI: 10.1038/onc.2011.223
Source: PubMed

ABSTRACT

Many estrogen receptor (ER)-positive breast cancers respond well initially to endocrine therapies, but often develop resistance during treatment with selective ER modulators (SERMs) such as tamoxifen. We have reported that the 14-3-3 family member and conserved protein, 14-3-3ζ, is upregulated by tamoxifen and that high expression correlated with an early time to disease recurrence. However, the mechanism by which tamoxifen upregulates 14-3-3ζ and may promote the development of endocrine resistance is not known. Our findings herein reveal that the tamoxifen upregulation of 14-3-3ζ results from its ability to rapidly downregulate microRNA (miR)-451 that specifically targets 14-3-3ζ. The levels of 14-3-3ζ and miR-451 were inversely correlated, with 14-3-3ζ being elevated and miR-451 being at a greatly reduced level in tamoxifen-resistant breast cancer cells. Of note, downregulation of miR-451 was selectively elicited by tamoxifen but not by other SERMs, such as raloxifene or ICI182,780 (Fulvestrant). Increasing the level of miR-451 by overexpression, which decreased 14-3-3ζ, suppressed cell proliferation and colony formation, markedly reduced activation of HER2, EGFR and MAPK signaling, increased apoptosis, and, importantly, restored the growth-inhibitory effectiveness of SERMs in endocrine-resistant cells. Opposite effects were elicited by miR-451 knockdown. Thus, we identify tamoxifen downregulation of miR-451, and consequent elevation of the key survival factor 14-3-3ζ, as a mechanistic basis of tamoxifen-associated development of endocrine resistance. These findings suggest that therapeutic approaches to increase expression of this tumor suppressor-like miR should be considered to downregulate 14-3-3ζ and enhance the effectiveness of endocrine therapies. Furthermore, the selective ability of the SERM tamoxifen but not raloxifene to regulate miR-451 and 14-3-3ζ may assist in understanding differences in their activities, as seen in the STAR (Study of Tamoxifen and Raloxifene) breast cancer prevention trial and in other clinical trials.

Download full-text

Full-text

Available from: Anna Bergamaschi
  • Source
    • "Furthermore, we found a number of additional miRNAs over-expressed in BRCA, such as miR-196a-1, miR- 190b, miR-592, miR-33b, miR-3677/-940 cluster, miR-1301, miR- 454, miR-130b/-301b cluster, miR-92b, miR-493, miR-331, miR-32, miR-1307, miR-671 and miR-769. In the down-regulated group, we also found several previous mentioned miRNAs, such as miR-29a [24], miR-497/-195 cluster [25] [26], miR-495 [27], miR-379 [28], miR-143/-145 cluster [29], miR-140 [30], miR-1258 [31], miR-584 [32], miR-100 [33], let-7c/miR-99a cluster [34] [35], miR-378 [36], miR-10b [37], miR-335 [38], miR-452 [39], miR-204 [40], miR-139 [17], miR-451/-144 cluster [41] and miR-486 [17]. Furthermore, several new miRNAs with reduced expression in BRCA were identified , such as miR-28, miR-193a, miR-3199-2, miR-218-2, miR-101- 2, miR-378c, miR-483, miR-381, miR-511, miR-383, miR-337, miR- 125b-1, miR-125b-2 and miR-1247. "
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs (miRNA) are involved in many biological processes. They repress target gene expression and play a vital role in breast invasive carcinoma (BRCA). Although many miRNAs are identified to be aberrantly expressed in BRCA and deemed as tumor markers, only sporadic individual studies report their target genes and the pathways involved.
    Full-text · Article · Apr 2016
  • Source
    • "Other investigations have corroborated our findings on miR-203 [36] and miR-205 [37]. The tumor suppressive role of miR-451a has been demonstrated in cancers of lung [32], breast [38] and brain (glioma cells) [31]. In glioma cells, the effects of miR-451 are mediated by LKB1 in the AMPK pathway, where LKB1 is repressed by targeting CAB39 [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: miRNAs are key regulatory small non-coding RNAs involved in critical steps of melanoma tumorigenesis; however, the relationship between sequence specific variations at the 5' or 3' termini (isomiR) of a miRNA and cancer phenotype remains unclear. Deep-sequencing and qRT-PCR showed reduced expression of miR-144/451a cluster and most abundant isomiR (miR451a.1) in dysplastic nevi, in-situ and invasive melanomas compared to common nevi and normal skin (n = 101). miRNA in situ hybridization reproducibly confirmed lost miR-451a.1 in melanoma compared to nevus cells or adjacent keratinocytes. Significantly higher expression of miR-451a.1 was associated with amelanotic phenotype in melanomas (n = 47). In contrast, miR-451a was associated with melanotic phenotype, absent pagetoid scatter of intraepidermal melanocytes, superficial spreading histological subtype and tumor inflammation. Sequencing miRNAs from cultured melanocytes with cytoplasmic melanin gradient (light, medium to dark) showed absent miR-451a while revealing other melanin-associated miRNAs, e.g. miR-30b, miR-100 and miR-590 in darkly and let-7a, let-7i and let-7f in lightly to moderately pigmented cultured melanocytes. Ectopic expression of miR-144/451a in melanoma cell lines resulted in markedly higher levels of mature miR-451a.1 than miR451a or miR-144; and significantly retarded cell migration and inhibited invasion in a glucose-sensitive manner. Surprisingly, these effects were not mediated by calcium binding protein 39 (CAB39), a proven miR451a gene target. miR-144/miR-451a cluster is a novel miRNA locus with tumor suppressive activity in melanoma.
    Full-text · Article · Sep 2014 · PLoS ONE
  • Source
    • "Furthermore, our prediction indicated that 14-3-3ζ and MEX3C might be potential targets of miR-451a. Studies showed that 14-3-3ζ played important role in cellular proliferation and migration through enhancing MAPK/c-Jun signaling [24]. MEX3C played a critical role in cellular growth by up-regulating insulin-like growth factor 1 (IGF1) expression [25]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Triple-negative breast cancer (TNBC) patients with truly chemosensitive disease still represent a minority among all TNBC patients. The aim of the present study is to identify microRNAs (miRNAs) that correlate with TNBC chemoresistance. In this study, we conducted miRNAs profile comparison between triple-negative breast cancer (TNBCs) and normal breast tissues by microRNA array. Quantitative real-time PCR (qRT-PCR) was utilized to confirm the specific deregulated miRNAs change trend. We used starBase 2.1 and GOrilla to predict the potential targets of the specific miRNAs. Cells viability and apoptosis assays were employed to determine the effect of alteration of the specific miRNAs in TNBC cells on the chemosensitivity. We identified 11 specific deregulated miRNAs, including 5 up-regulated miRNAs (miR-155-5p, miR-21-3p, miR-181a-5p, miR-181b-5p, and miR-183-5p) and 6 down-regulated miRNAs (miR-10b-5p, miR-451a, miR-125b-5p, miR-31-5p, miR-195-5p and miR-130a-3p). Thereafter, this result was confirmed by qRT-PCR. We predicted the potential targets of the candidate miRNAs and found that they are involved in cancer-associated pathways. For the first time, we found that miR-130a-3p and miR-451a were down-regulated in TNBC. 9 of the 11 specific deregulated miRNAs were found to be associated with chemoresistance. In vitro assays, we found that up-regulation of either miR-130a-3p or miR-451a in MDA-MB-231 cells significantly changed the cells sensitivity to doxorubicin. The results suggest that TNBC chemotherapy might be affected by a cluster of miRNAs. The abnormal expression miRNAs in TNBC are mainly chemoresistance related. This might be part of reason that TNBC likely to evade from chemotherapy resulting in early relapse and high risk of death. To alter their expression status might be a potential therapeutic strategy to improve the outcome of chemotherapy for TNBC patients.
    Full-text · Article · May 2014 · PLoS ONE
Show more