Carvalho, F.A. et al. Interleukin-1beta (IL-1beta) promotes susceptibility of Toll-like receptor 5 (TLR5) deficient mice to colitis. Gut 61, 373-384

Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA.
Gut (Impact Factor: 14.66). 06/2011; 61(3):373-84. DOI: 10.1136/gut.2011.240556
Source: PubMed


The extent to which numerous strains of genetically engineered mice, including mice lacking Toll-like receptor 5 (T5KO), display colitis is environment dependent. Gut microbiota underlie much of the variation in phenotype. Accordingly, embryonic rederivation of T5KO mice ameliorated their spontaneous colitis despite only partially correcting elevated proinflammatory gene expression. It was postulated that endogenous anti-inflammatory pathways mediated the absence of overt inflammation in these mice when their gut microbiota were reset. Consequently, it was hypothesised that neutralisation of the anti-inflammatory cytokine interleukin 10 (IL-10) might induce uniform colitis in T5KO mice, and thus provide a practical means to study mechanisms underlying their inflammation.
Two distinct strains of non-colitic T5KO mice, as well as mice lacking MyD88, Toll-like receptor 4 (TLR4), IL-1 receptor (IL-1R) and various double knockouts (DKOs) were treated weekly for 4  weeks with 1 mg/mouse of IL-10 receptor neutralising antibody (IL-10R mAb) and colitis assayed 1 week later. The composition of the caecal microbiota was determined by 454 pyrosequencing of 16S rRNA genes.
Anti-IL-10R mAb treatment led to severe uniform intestinal inflammation in both strains of T5KO mice. Such neutralisation of IL-10 signalling did not cause colitis in wild-type littermates nor mice lacking TLR4, MyD88 or IL-1R. The susceptibility of T5KO mice to this colitis model was not rescued by absence of TLR4 in that T4/T5 DKO mice displayed severe colitis in response to anti-IL-10R mAb treatment. IL-1β signalling was crucial for this colitis model in that IL-1R/T5 DKOs were completely protected from colitis in response to IL-10R mAb treatment. Lastly, it was observed that blockade of IL-10R function was associated with changes in the composition of gut microbiota, which were observed in mice that were susceptible and resistant to IL-10R mAb-induced colitis.
Regardless of whether they harbour a colitogenic microbiota, loss of TLR5 predisposes mice to colitis triggered by immune dysregulation via an IL-1β-dependent pathway.

Download full-text


Available from: Omry Koren, Sep 09, 2014
  • Source
    • "QIIME was used for alignment using Infernal [43], a stochastic context-free grammar aligner, clustering of sequences into operational taxonomic units using uclust [44], phylogenetic reconstruction using the reference + de novo protocol (given the high incidence of likely new clusters), and taxonomy assignment with the RDP classifier [45]. Alpha and beta diversity analyses and visualizations were also performed [46]–[48]. Statistical significance was assessed using parametric and nonparametric approaches including false discovery rate (FDR) corrections by the Benjamini-Hochberg method. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.
    Full-text · Article · Aug 2014 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Inflammatory bowel disease (IBD) is characterized by chronic intestinal inflammation due to dysregulation of the mucosal immune system. The cytokines IL-1β and IL-18 appear early in intestinal inflammation and their pro-forms are processed via the caspase-1-activating multiprotein complex, the Nlrp3 inflammasome. Previously, we reported that the uptake of dextran sodium sulfate (DSS) by macrophages activates the Nlrp3 inflammasome and that Nlrp3(-/-) mice are protected in the acute DSS colitis model. Of note, other groups have reported opposing effects in regards to DSS susceptibility in Nlrp3(-/-) mice. Recently, mice lacking inflammasomes were found to develop a distinct intestinal microflora. Methods: To reconcile the contradicting observations, we investigated the role of Nlrp3 deficiency in two different IBD models: acute DSS colitis and TNBS (2,4,6-trinitrobenzene sulfonic acid)-induced colitis. In addition, we investigated the impact of the intestinal flora on disease severity by performing cohousing experiments of wild-type and Nlrp3(-/-) mice, as well as by antibiotic treatment. Results: Nlrp3(-/-) mice treated with either DSS or TNBS exhibited attenuated colitis and lower mortality. This protective effect correlated with an increased frequency of CD103+ lamina propria dendritic cells expressing a tolerogenic phenotype in Nlrp3(-/-) mice in steady state conditions. Interestingly, after cohousing, Nlrp3(-/-) mice were as susceptible as wild-type mice, indicating that transmission of endogenous bacterial flora between the two mouse strains might increase susceptibility of Nlrp3(-/-) mice towards DSS-induced colitis. Accordingly, treatment with antibiotics almost completely prevented colitis in the DSS model. Conclusions: The composition of the intestinal microflora significantly influences disease severity in IBD models comparing wild-type and Nlrp3(-/-) mice. This observation may - at least in part - explain contradictory results concerning the role of the inflammasome in different labs. Further studies are required to define the role of the Nlrp3 inflammasome in noninflamed mucosa under steady state conditions and in IBD.
    No preview · Article · Oct 2012 · Digestive Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian intestine harbors trillions of microbes collectively known as the microbiota, which can be viewed as an anaerobic metabolic organ that benefits the host in a number of ways. The homeostasis of this large microbial biomass is a prerequisite to maintaining host health by maximizing symbiotic interrelations and minimizing the risk of living in a close relationship. The cooperation between the innate and adaptive immune systems of the host maintains homeostasis of the microbiota. The dysregulation/alteration of microbiota in various immunodeficiency states including both innate and adaptive deficiency results in metabolic disease. This review examines the influence of microbiota on host metabolic health in immunologically altered mice. Accumulated data from a variety of immune-deficient murine models indicate that altered microbiota can play a key role in origination of metabolic diseases through the following potential mechanisms: (i) increasing calorie extraction resulting in adiposity, (ii) inducing low-grade chronic inflammation in the gut directly or increasing systemic loads of microbial ligands via leaky guts, (iii) generating toxic metabolites from dietary components, and (iv) inducing a switch from pro-metabolic to pro-immune phenotype that drives malabsorption of lipids resulting in muscle wastage and weight loss-particularly upon states of adaptive immune deficiency. Further, these murine models demonstrate that altered microbiota is not purely a consequence of metabolic disease but plays a key role in driving this disorder.
    Full-text · Article · Oct 2012 · Advances in Immunology
Show more