Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses

National Laboratory of Biomacromolecules, and the Center for Computational and Systems Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
Protein & Cell (Impact Factor: 3.25). 05/2011; 2(5):410-22. DOI: 10.1007/s13238-011-1049-7
Source: PubMed


The Rad1 gene is evolutionarily conserved from yeast to human. The fission yeast Schizosaccharomyces pombe Rad1 ortholog promotes cell survival against DNA damage and is required for G(2)/M checkpoint activation. In this study, mouse embryonic stem (ES) cells with a targeted deletion of Mrad1, the mouse ortholog of this gene, were created to evaluate its function in mammalian cells. Mrad1 (-/-) ES cells were highly sensitive to ultraviolet-light (UV light), hydroxyurea (HU) and gamma rays, and were defective in G(2)/M as well as S/M checkpoints. These data indicate that Mrad1 is required for repairing DNA lesions induced by UV-light, HU and gamma rays, and for mediating G(2)/M and S/M checkpoint controls. We further demonstrated that Mrad1 plays an important role in homologous recombination repair (HRR) in ES cells, but a minor HRR role in differentiated mouse cells.

  • Source
    • "Following electrophoresis, the slides were stained with PI. Fluorescence images were captured using a microscope and analyzed by CASP-1.2.2 software (University of Wroclaw) for tail moment (the geometric mean of fluorescence on the tail from the nucleus) [41]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There have been many studies on the biological effects of simulated microgravity (SMG) on differentiated cells or adult stem cells. However, there has been no systematic study on the effects of SMG on embryonic stem (ES) cells. In this study, we investigated various effects (including cell proliferation, cell cycle distribution, cell differentiation, cell adhesion, apoptosis, genomic integrity and DNA damage repair) of SMG on mouse embryonic stem (mES) cells. Mouse ES cells cultured under SMG condition had a significantly reduced total cell number compared with cells cultured under 1 g gravity (1G) condition. However, there was no significant difference in cell cycle distribution between SMG and 1G culture conditions, indicating that cell proliferation was not impaired significantly by SMG and was not a major factor contributing to the total cell number reduction. In contrast, a lower adhesion rate cultured under SMG condition contributed to the lower cell number in SMG. Our results also revealed that SMG alone could not induce DNA damage in mES cells while it could affect the repair of radiation-induced DNA lesions of mES cells. Taken together, mES cells were sensitive to SMG and the major alterations in cellular events were cell number expansion, adhesion rate decrease, increased apoptosis and delayed DNA repair progression, which are distinct from the responses of other types of cells to SMG.
    Full-text · Article · Dec 2011 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SAMEM (System for Analysis of Molecular Evolution Modes), a web-based pipeline system for inferring modes of molecular evolution in genes and proteins (, is presented. Pipeline 1 performs analyses of protein-coding gene evolution; pipeline 2 performs analyses of protein evolution; pipeline 3 prepares datasets of genes and/or proteins, performs their primary analysis, and builds BLOSUM matrices; pipeline 4 checks if these genes really are protein-coding. Pipeline 1 has an all-new feature, which allows the user to obtain K(R)/K(C) estimates using several different methods. An important feature of pipeline 2 is an original method for analyzing the rates of amino acid substitutions at the branches of a phylogenetic tree. The method is based on Markov modeling and a non-parametric permutation test, which compares expected and observed frequencies of amino acid substitutions, and infers the modes of molecular evolution at deep inner branches.
    Full-text · Article · Jan 2011 · In silico biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The substantia nigra plays important roles in the brain function and is critical in the development of many diseases, particularly Parkinson's disease. Pathological changes of the substantia nigra have also been reported in other neurodegenerative diseases. Using a quantitative proteomic approach, we investigated protein expressions in the substantia nigra of Alzheimer's disease, Huntington's disease, and Multiple sclerosis. The expression level of one hundred and four proteins that were identified in at least three samples of each group were compared with the control group, with nineteen, twenty-two and thirteen proteins differentially expressed in Alzheimer's diseases, Huntington's disease and Multiple sclerosis respectively. The result indicates that the substantia nigra also undergoes functional adaption or damage in these diseases.
    Full-text · Article · Aug 2012 · Neurochemical Research
Show more