Article

Twin Study Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With Ulcerative Colitis

Institute of Clinical Molecular Biology, Christian-Albrechts University-Kiel, Kiel, Germany.
Gastroenterology (Impact Factor: 16.72). 04/2011; 141(1):227-36. DOI: 10.1053/j.gastro.2011.04.011
Source: PubMed

ABSTRACT

Interactions between genetic and environmental factors are believed to be involved in onset and initiation of inflammatory bowel disease. We analyzed the interaction between gastrointestinal mucosal microbiota and host genes in twin pairs discordant for ulcerative colitis (UC) to study the functional interaction between microbiota and mucosal epithelium.
Biopsy were collected from sigmoid colon of UC patients and their healthy twins (discordant twin pairs) and from twins without UC. Microbiota profiles were determined from analysis of 16S ribosomal DNA libraries; messenger RNA profiles were determined by microarray analysis.
Patients with UC had dysbiotic microbiota, characterized by less bacterial diversity and more Actinobacteria and Proteobacteria than that of their healthy siblings; healthy siblings from discordant twins had more bacteria from the Lachnospiraceae and Ruminococcaceae families than twins who were both healthy. In twins who were both healthy, 34 mucosal transcripts correlated with bacterial genera, whereas only 25 and 11 correlated with bacteria genera in healthy individuals and their twins with UC, respectively. Transcripts related to oxidative and immune responses were differentially expressed between patients with UC and their healthy twins.
The transcriptional profile of the mucosa appears to interact with the colonic microbiota; this interaction appears to be lost in colon of patients with UC. Bacterial functions, such as butyrate production, might affect mucosal gene expression. Patients with UC had different gene expression profiles and lower levels of biodiversity than their healthy twins, as well as unusual aerobic bacteria. Patients with UC had lower percentages of potentially protective bacterial species than their healthy twins.

Download full-text

Full-text

Available from: Limas Kupcinskas
  • Source
    • "tion. For example , shifts in diet can produce rapid and pronounced alterations in the microbiota ( David et al. , 2014a , b ). In addition to diet , stressors such as antibiotic treatment , enteric infection , and colitis can induce remodeling of the gut microbiota ( Garrett et al . , 2007 ; Stecher et al . , 2010 ; Dethlefsen and Relman , 2011 ; Lepage et al . , 2011 ) . The insensitivity of a community to disturbance is referred to as its stability . Stability can be measured both in terms of resistance , the degree to which a community is unresponsive to a change in conditions , as well as the resilience , the tendency for a community to return to its original state following a disturbance ( Shade"
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute colitis causes alterations in the intestinal microbiota, but the microbiota is thought to recover after such events. Extreme microbiota alterations are characteristic of human chronic inflammatory bowel diseases, although alterations reported in different studies are divergent and sometimes even contradictory. To better understand the impact of periodic disturbances on the intestinal microbiota and its compositional difference between acute and relapsing colitis, we investigated the beginnings of recurrent inflammation using the dextran sodium sulfate (DSS) mouse model of chemically induced colitis. Using bacterial 16S rRNA gene-targeted pyrosequencing as well as quantitative fluorescence in situ hybridization, we profiled the intestinal and stool microbiota of mice over the course of three rounds of DSS-induced colitis and recovery. We found that characteristic inflammation-associated microbiota could be detected in recovery-phase mice. Successive inflammation episodes further drove the microbiota into an increasingly altered composition post-inflammation, and signatures of colitis history were detectable in the microbiota more sensitively than by pathology analysis. Bacterial indicators of murine colitis history were identified in intestinal and stool samples, with a high degree of consistency between both sample types. Stool may therefore be a promising non-invasive source of bacterial biomarkers that are highly sensitive to inflammation state and history.
    Full-text · Article · Dec 2015 · Frontiers in Microbiology
  • Source
    • "Moreover, our group identified several differentially methylated sites in the colonic epigenome of discordant colitis twins with functional consequences, i.e. impact gene expression [7]. Monozygotic discordant UC (Ulcerative colitis) twins were also shown to differ in the bacterial composition of their gut microbiota, with the affected twins showing less diversity than their healthy co-twins [8]. This suggests an important link between disease and the microbiome. "
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Crohn's disease (CD) is an inflammatory bowel disease caused by genetic and environmental factors. More than 160 susceptibility loci have been identified for IBD, yet a large part of the genetic variance remains unexplained. Recent studies have demonstrated genetic differences between monozygotic twins, who were long thought to be genetically completely identical. RESULTS: We aimed to test if somatic mutations play a role in CD etiology by sequencing the genomes and exomes of directly affected tissue from the bowel and blood samples of one and the blood-derived exomes of two further monozygotic discordant twin pairs. Our goal was the identification of mutations present only in the affected twins, pointing to novel candidates for CD susceptibility loci. We present a thorough genetic characterization of the sequenced individuals but detected no consistent differences within the twin pairs. An estimate of the CD susceptibility based on known CD loci however hinted at a higher mutational load in all three twin pairs compared to 1,920 healthy individuals. CONCLUSION: Somatic mosaicism does not seem to play a role in the discordance of monozygotic CD twins. Our study constitutes the first to perform whole genome sequencing for CD twins and therefore provides a valuable reference dataset for future studies. We present an example framework for mosaicism detection and point to the challenges in these types of analyses.
    Full-text · Article · Jul 2014 · BMC Genomics
  • Source
    • "A study comparing biopsies from the sigmoid colon of UC patients with those from their healthy twins found a difference in the microbial profile, as well as indications of a loss of interaction between the transcriptional profile of the mucosal epithelium and the colonic microbiota in UC patients( 48 ). This begs the following question: is microbial dysbiosis the cause or effect of this disease? "
    [Show abstract] [Hide abstract]
    ABSTRACT: The present report describes the presentations delivered at the 7th International Yakult Symposium, 'The Intestinal Microbiota and Probiotics: Exploiting Their Influence on Health', in London on 22-23 April 2013. The following two themes associated with health risks were covered: (1) the impact of age and diet on the gut microbiota and (2) the gut microbiota's interaction with the host. The strong influence of the maternal gut microbiota on neonatal colonisation was reported, as well as rapid changes in the gut microbiome of older people who move from community living to residential care. The effects of dietary changes on gut metabolism were described and the potential influence of inter-individual microbiota differences was noted, in particular the presence/absence of keystone species involved in butyrate metabolism. Several speakers highlighted the association between certain metabolic disorders and imbalanced or less diverse microbiota. Data from metagenomic analyses and novel techniques (including an ex vivo human mucosa model) provided new insights into the microbiota's influence on coeliac, obesity-related and inflammatory diseases, as well as the potential of probiotics. Akkermansia muciniphila and Faecalibacterium prausnitzii were suggested as targets for intervention. Host-microbiota interactions were explored in the context of gut barrier function, pathogenic bacteria recognition, and the ability of the immune system to induce either tolerogenic or inflammatory responses. There was speculation that the gut microbiota should be considered a separate organ, and whether analysis of an individual's microbiota could be useful in identifying their disease risk and/or therapy; however, more research is needed into specific diseases, different population groups and microbial interventions including probiotics.
    Full-text · Article · Jul 2014 · British Journal Of Nutrition
Show more