Antimicrobial activity of a chlorhexidine intravascular catheter site gel dressing

Department of Clinical Microbiology and Infection Control, University Hospitals Birmingham NHS Foundation Trust, UK.
Journal of Antimicrobial Chemotherapy (Impact Factor: 5.31). 05/2011; 66(8):1777-84. DOI: 10.1093/jac/dkr191
Source: PubMed


The antimicrobial efficacy of a chlorhexidine gluconate (CHG) intravascular catheter gel dressing was evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and an extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. Chlorhexidine deposition on the skin surface and release from the gel were determined.
The antimicrobial efficacy was evaluated in in vitro studies following microbial inoculation of the dressing and application of the dressing on the inoculated surface of a silicone membrane and donor skin [with and without a catheter segment and/or 10% (v/v) serum] on diffusion cells. Antimicrobial activity was evaluated for up to 7 days. Chlorhexidine skin surface deposition and release were also determined.
MRSA and E. coli were not detectable within 5 min following direct inoculation onto the CHG gel dressing. On the silicone membrane, 3 log and 6 log inocula of MRSA were eradicated within 5 min and 1 h, respectively. Time to kill was prolonged in the presence of serum and a catheter segment. Following inoculation of donor skin with 6 log cfu of MRSA, none was detected after 24 h. Chlorhexidine was released from the gel after a lag time of 30 min and increasing amounts were detected on the donor skin surface over the 48 h test period. The CHG gel dressing retained its antimicrobial activity on the artificial skin for 7 days.
The CHG intravascular catheter site gel dressing had detectable antimicrobial activity for up to 7 days, which should suppress bacterial growth on the skin at the catheter insertion site, thereby reducing the risk of infection.

Full-text preview

Available from:
  • Source
    • "In low-birth-weight infants (< 1,000 g), chlorhexidine sponges were associated with a far higher rate of contact dermatitis of 15.3% and therefore should be avoided [67]. New chlorhexidine-impregnated gel dressings were developed recently and have been shown to decrease the cutaneous microflora to a similar extent as the sponges [68]. The clinical efficacy of this new dressing in ICU patients is being tested in a large randomized trial (http://www.clinicaltrial.govNCT "
    [Show abstract] [Hide abstract]
    ABSTRACT: Catheters are the leading source of bloodstream infections for patients in the intensive care unit (ICU). Comprehensive unit-based programs have proven to be effective in decreasing catheter-related bloodstream infections (CR-BSIs). ICU rates of CR-BSI higher than 2 per 1,000 catheter-days are no longer acceptable. The locally adapted list of preventive measures should include skin antisepsis with an alcoholic preparation, maximal barrier precautions, a strict catheter maintenance policy, and removal of unnecessary catheters. The development of new technologies capable of further decreasing the now low CR-BSI rate is a major challenge. Recently, new materials that decrease the risk of skin-to-vein bacterial migration, such as new antiseptic dressings, were extensively tested. Antimicrobial-coated catheters can prevent CR-BSI but have a theoretical risk of selecting resistant bacteria. An antimicrobial or antiseptic lock may prevent bacterial migration from the hub to the bloodstream. This review discusses the available knowledge about these new technologies.
    Full-text · Article · Aug 2011 · Annals of Intensive Care
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Health care related infections are one of the most common adverse events among hospitalized patients. These types of infections are related to an increased morbidity, mortality, hospitalization time, and health care related costs. Chlorhexidine has been proven to be useful for preventing health care related infections due to its wide antiseptic spectrum, effectiveness and safety. Different studies have shown evidence about the effectiveness of chlorhexidine in the prevention of infections related to surgical sites, vascular catheter related bloodstream infections, ventilator associated pneumonia, maternal and neonatal infections and other infections caused by Staphylococcus aureus. Most studies have found superiority of this compound against other antiseptics in the prevention and control of health care related infections.
    Full-text · Article · Jun 2011 · Infectio
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biologic wound dressings contain animal-derived components and are susceptible to high infection rates. To address this issue, we report an approach that permits incorporation of non-toxic levels of the small molecule antiseptic 'chlorhexidine' into biologic dressings. The approach relies on the fabrication of polyelectrolyte multilayer (PEMs) films containing poly(allylaminehydrochloride) (PAH), poly(acrylicacid) (PAA), and chlorhexidine acetate (CX) on elastomeric poly(dimethylsiloxane) (PDMS) sheets. The PEMs (20-100 nm thick) are subsequently stamped onto the wound-contact surface of a synthetic biologic dressing, Biobrane, which contains collagen peptides. Chlorhexidine loading in the PEMs was tailored by tuning the number of (CX/PAA) bilayers deposited, providing burst release of up to 0.98 ± 0.06 μg/cm(2) of CX over 24 h, followed by zero-order release of 0.35 ± 0.04 μg/cm(2)/day for another week. Although the CX concentrations released were below the reported in vitro cytotoxicity limit (5 μg/mL over 24 h) for human dermal fibroblasts, they killed 4 log(10) counts of pathogenic bacteria Staphylococcus aureus in solution. The CX/PEMs could be stamped onto Biobrane with high efficiency to provide CX release kinetics and in vitro antibacterial activity similar to that on PDMS stamps. In a full-thickness 'splinted' dermal wound-model in normal wild-type mice, the CX-functionalized Biobrane showed no decrease in either its adherence to the wound-bed or wound closure rate over 14 days. The murine wounds topically inoculated with ∼10(5) CFU/cm(2) of S. aureus and treated with CX-functionalized Biobrane demonstrated a 3 log(10) decrease in the wound's bacterial burden within 3 days, compared to persistent bacterial colonization found in wounds treated with unmodified Biobrane (n = 10 mice, p < 0.005). Overall, this study presents a promising approach to prevent bacterial colonization in wounds under biologic dressings.
    Full-text · Article · Jul 2012 · Biomaterials
Show more