Reduced transverse relaxation rate (RR2) for improved sensitivity in monitoring myocardial iron in thalassemia

Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
Journal of Magnetic Resonance Imaging (Impact Factor: 3.21). 06/2011; 33(6):1510-6. DOI: 10.1002/jmri.22553
Source: PubMed


To evaluate the reduced transverse relaxation rate (RR2), a new relaxation index which has been shown recently to be primarily sensitive to intracellular ferritin iron, as a means of detecting short-term changes in myocardial storage iron produced by iron-chelating therapy in transfusion-dependent thalassemia patients.
A single-breathhold multi-echo fast spin-echo sequence was implemented at 3 Tesla (T) to estimate RR2 by acquiring signal decays with interecho times of 5, 9 and 13 ms. Transfusion-dependent thalassemia patients (N = 8) were examined immediately before suspending iron-chelating therapy for 1 week (Day 0), after a 1-week suspension of chelation (Day 7), and after a 1-week resumption of chelation (Day 14).
The mean percent changes in RR2, R2, and R2* off chelation (between Day 0 and 7) were 11.9 ± 8.9%, 5.4 ± 7.7% and -4.4 ± 25.0%; and, after resuming chelation (between Day 7 and 14), -10.6 ± 13.9%, -8.9 ± 8.0% and -8.5 ± 24.3%, respectively. Significant differences in R2 and RR2 were observed between Day 0 and 7, and between Day 7 and 14, with the greatest proportional changes in RR2. No significant differences in R2* were found.
These initial results demonstrate that significant differences in RR2 are detectable after a single week of changes in iron-chelating therapy, likely as a result of superior sensitivity to soluble ferritin iron, which is in close equilibrium with the chelatable cytosolic iron pool. RR2 measurement may provide a new means of monitoring the short-term effectiveness of iron-chelating agents in patients with myocardial iron overload.

Download full-text


Available from: Ed X Wu, Feb 17, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of magnetic resonance imaging (MRI) to estimate tissue iron was conceived in the 1980s, but has only become a practical reality in the last decade. The technique is most often used to estimate hepatic and cardiac iron in patients with transfusional siderosis and has largely replaced liver biopsy for liver iron quantification. However, the ability of MRI to quantify extrahepatic iron has had a greater impact on patient care and on our understanding of iron overload pathophysiology. Iron cardiomyopathy used to be the leading cause of death in thalassemia major, but is now relatively rare in centers with regular MRI screening of cardiac iron, through earlier recognition of cardiac iron loading. Longitudinal MRI studies have demonstrated differential kinetics of uptake and clearance among the difference organs of the body. Although elevated serum ferritin and liver iron concentration (LIC) increase the risk of cardiac and endocrine toxicities, some patients unequivocally develop extrahepatic iron deposition and toxicity despite having low total body iron stores. These observations, coupled with the advent of increasing options for iron chelation therapy, are allowing clinicians to more appropriately tailor chelation therapy to individual patient needs, producing greater efficacy with fewer toxicities. Future frontiers in MRI monitoring include improved prevention of endocrine toxicities, particularly hypogonadotropic hypogonadism and diabetes.
    No preview · Article · Dec 2011 · Hematology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To characterize changes in relaxation times of liver using quantitative magnetic resonance imaging (MRI) in an experimental mouse model of liver fibrosis. Quantitative MRI is a potentially robust method to characterize liver fibrosis. However, correlation between relaxation times and fibrosis stage has been controversial. Liver fibrosis was induced in male adult C57BL/6N mice (22-25 g; n = 12) by repetitive dosing of carbon tetrachloride (CCl(4) ). The animals were examined with a series of spin-echo (SE) images with varying TRs and multiecho SE imaging sequence at 7 T before and 2, 4, 6, and 8 weeks after CCl(4) insult. Hepatic T(1) and T(2) values were measured. Histology was performed with hematoxylin-eosin staining and Masson's trichrome staining. Significant increase (P < 0.001) in hepatic T(1) was found at 2, 4, 6, and 8 weeks following CCl(4) insult as compared with that before insult. Meanwhile, hepatic T(2) at 2, 4, 6, and 8 weeks after CCl(4) insult was significantly higher (P < 0.001) than that before the insult. Liver histology showed collagen deposition, edema, and infiltration of inflammatory cells in livers with CCl(4) insult. Both longitudinal and transverse relaxation times may serve as robust markers for liver fibrosis. With the advent of single breath-hold sequences for MR relaxometry, quantitative mapping of relaxation times can be routinely and reliably performed in abdominal organs and hence may be valuable and robust in detecting liver fibrosis at early phase and monitoring its progression.
    Full-text · Article · Jul 2012 · Journal of Magnetic Resonance Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to characterize the effects of stimulated echo contamination on MR-based iron measurement derived from quantitative T(2) images and develop a method for retrospective correction. Two multiple spin-echo (MSE) pulse sequences were implemented with different amounts of stimulated echo contamination. Agarose-based phantoms were constructed that simulate the relaxation and susceptibility properties of tissue with different concentrations of dispersed (ferritin-like) and aggregated (hemosiderin-like) iron. Additionally, myocardial iron was assessed in nine human subjects with transfusion iron overload. These data were used to determine the influence of stimulated echoes on iron measurements made by an MR-based iron quantification model that can separately measure dispersed and aggregated iron. The study found that stimulated echo contamination caused an underestimation of dispersed (ferritin-like) iron and an overestimation of aggregated (hemosiderin-like) iron when applying this model. The relationship between the measurements made with and without stimulated echo appears to be linear. The findings suggest that while it is important to use MSE sequences with minimal stimulated echo in T(2)-based iron quantification, it appears that data acquired with sub-optimal sequences can be retrospectively corrected using the methodology described here.
    Full-text · Article · Dec 2012 · Magnetic Resonance Imaging
Show more