Access to this full-text is provided by IUCr.
Content available from Acta Crystallographica Section E: Crystallographic Communications
This content is subject to copyright.
Solvate-free bis(triphenylphosphine)-
iminium chloride
Carsten Knapp* and Rabiya Uzun
Institut fu
¨r Anorganische und Analytische Chemie, Albert-Ludwigs-Universita
¨t
Freiburg, Albertstrasse 21, 79104 Freiburg i. Br., Germany
Correspondence e-mail: carsten.knapp@ac.uni-freiburg.de
Received 25 October 2010; accepted 9 November 2010
Key indicators: single-crystal X-ray study; T= 123 K; mean (C–C) = 0.004 A
˚;
Rfactor = 0.049; wR factor = 0.135; data-to-parameter ratio = 13.9.
The title compound, C
36
H
30
NP
2+
Cl
, crystallized in the
solvate-free form from a CH
3
CN/OEt
2
solution. The chloride
anion and the N atom of the [(Ph
3
P)
2
N]
+
cation are located on
a twofold axis, yielding overall symmetry 2 for the cation. The
central P—N—P angle [133.0 (3)] is at the low end of the
range of observed P—N—P angles.
Related literature
Several bis(triphenylphosphine)iminium chloride structures
containing solvate molecules have been determined. For
[(Ph
3
P)
2
N]ClB(OH)
3
, see: Andrews et al. (1983); for
[(Ph
3
P)
2
N]ClCH
3
C
6
H
5
, see: Weller et al. (1993); for
[(Ph
3
P)
2
N]ClCH
2
Cl
2
, see: Carroll et al. (1996); for [(Ph
3
P)
2
N]-
ClCH
2
Cl
2
H
2
O, see: de Arellano (1997). Other bis(triphenyl-
phosphine)iminium halide structures have been determined:
for [(Ph
3
P)
2
N]BrCH
3
CN, see: Knapp & Uzun (2010); for
[(Ph
3
P)
2
N]I, see: Beckett et al. (2010). For a discussion of the
[(Ph
3
P)
2
N]
+
cation, see: Lewis & Dance (2000). For a
description of the Cambridge Structural Database, see: Allen
(2002). For the synthesis, see: Ruff & Schlientz (1974).
Experimental
Crystal data
C
36
H
30
NP
2+
Cl
M
r
= 574.00
Monoclinic, C2=c
a= 15.094 (3) A
˚
b= 10.499 (2) A
˚
c= 18.615 (4) A
˚
= 99.06 (3)
V= 2913.0 (10) A
˚
3
Z=4
Mo Kradiation
= 0.27 mm
1
T= 123 K
0.30 0.23 0.23 mm
Data collection
Rigaku R-AXIS Spider
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
T
min
= 0.924, T
max
= 0.941
7362 measured reflections
2551 independent reflections
2296 reflections with I>2(I)
R
int
= 0.043
Refinement
R[F
2
>2(F
2
)] = 0.049
wR(F
2
) = 0.135
S= 1.24
2551 reflections
183 parameters
H-atom parameters constrained
max
= 0.41 e A
˚
3
min
=0.42 e A
˚
3
Table 1
Selected geometric parameters (A
˚,).
P1—N1 1.5984 (18)
P1—C7 1.795 (3)
P1—C1 1.802 (3)
P1—C13 1.811 (3)
P1—N1—P1
i
133.0 (3)
Symmetry code: (i) xþ1;y;zþ3
2.
Data collection: CrystalClear (Rigaku, 2007); cell refinement:
CrystalClear; data reduction: CrystalClear; program(s) used to solve
structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine
structure: SHELXL97 (Sheldrick, 2008); molecular graphics:
DIAMOND (Brandenburg & Putz, 2010); software used to prepare
material for publication: SHELXL97.
Financial support by the Deutsche Forschungsgemeinschaft
(DFG) and the Universita
¨t Freiburg is gratefully acknowl-
edged.
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: FI2099).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388.
Andrews, S. J., Robb, D. A. & Welch, A. J. (1983). Acta Cryst. C39, 880–882.
Arellano, M. C. R. de (1997). Private communication (refcode: RAVBUL).
CCDC, Cambridge, England.
Beckett, M. A., Horton, P. N., Hursthouse, M. B. & Timmis, J. L. (2010). Acta
Cryst. E66, o319.
Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn,
Germany.
Carroll, K. M., Rheingold, A. L. & Allen, M. B. (1996). Private communication
(refcode: NAVMEM ). CCDC, Cambridge, England.
Higashi, T. (2001). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Knapp, C. & Uzun, R. (2010). Acta Cryst. E66, o3186.
Lewis, G. R. & Dance, I. (2000). J. Chem. Soc. Dalton Trans. pp. 299–306.
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Ruff, J. K. & Schlientz, W. J. (1974). Inorg. Synth. 15, 84–87.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Weller, F., Nussha
¨r, D. & Dehnicke, K. (1993). Z. Kristallogr. 208, 322–325.
organic compounds
Acta Cryst. (2010). E66, o3185 doi:10.1107/S1600536810046325 Knapp and Uzun o3185
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
supporting information
sup-1
Acta Cryst. (2010). E66, o3185
supporting information
Acta Cryst. (2010). E66, o3185 [https://doi.org/10.1107/S1600536810046325]
Solvate-free bis(triphenylphosphine)iminium chloride
Carsten Knapp and Rabiya Uzun
S1. Comment
The title compound [(Ph3P)2N]Cl ([PNP]Cl) is a very important starting material and numerous crystal structures
containing the [(Ph3P)2N]+ cation are known. The Cambridge Structural Database (Allen, 2002) currently contains more
than 1200 structures containing the [(Ph3P)2N]+ cation. Usually this cation is partnered by a bulky cation, while crystal
structures containing small anions and especially halides are rare. Very recently, the crystal structures of solvate-free
[(Ph3P)2N]I (Beckett et al., 2010) and [(Ph3P)2N]Br.CH3CN (Knapp et al., 2010) were published.
Several crystal structures of [(Ph3P)2N]Cl containing solvate molecules have been determined, e.g. [(Ph3P)2N]Cl.B(OH)3
(Andrews et al. (1983)), [(Ph3P)2N]Cl.CH3C6H5, (Weller et al. (1993)), [(Ph3P)2N]Cl.CH2Cl2 (Carroll et al. (1996)),
[(Ph3P)2N]Cl.CH2Cl2.H2O (de Arellano (1997)). Surprisingly, the crystal structure of the parent compound [(Ph3P)2N]Cl
was still unknown.
[(Ph3P)2N]Cl has been synthesized according to a published method (Ruff et al., 1974) and solvate-free single crystals
suitable for X-ray diffraction were obtained by layering a CH3CN solution with diethyl ether. The chlorine anion and the
[(Ph3P)2N]+ cation are located on a 2 axis, yielding overall symmetry 2 of the cation. The central P—N—P angle [133.1
(3)°] is on the low end of the range of observed P—N—P angles. The P-N (1.597 (2) Å) and P-C distances (179.3 (4)–
180.8 (4) Å) are in the expected range.
S2. Experimental
[(Ph3P)2N]Cl has been synthesized according to a published method (Ruff et al., 1974). Single crystals suitable for X-ray
diffraction were obtained by layering a CH3CN solution with diethyl ether.
S3. Refinement
The hydrogen atoms were positioned geometrically and refined using a riding model. The same Uiso value was used for all
H atoms, which refined to 0.031 (3) Å2.
supporting information
sup-2
Acta Cryst. (2010). E66, o3185
Figure 1
View of the ionic unit of [(Ph3P)2N]Cl. Displacement ellipsoids are shown at the 50% probability level and hydrogen
atoms are drawn with arbitrary radii. Symmetry code: (i) 1-x, y, 1.5-z.
Figure 2
View of the surrounding of the chloride anion.
supporting information
sup-3
Acta Cryst. (2010). E66, o3185
Bis(triphenylphosphanylidene)iminium chloride
Crystal data
C36H30NP2+·Cl−
Mr = 574.00
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 15.094 (3) Å
b = 10.499 (2) Å
c = 18.615 (4) Å
β = 99.06 (3)°
V = 2913.0 (10) Å3
Z = 4
F(000) = 1200
Dx = 1.309 Mg m−3
Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 1435 reflections
θ = 2.2–27.5°
µ = 0.27 mm−1
T = 123 K
Block, colourless
0.30 × 0.23 × 0.23 mm
Data collection
Rigaku R-AXIS Spider
diffractometer
Radiation source: sealed tube
Graphite monochromator
Detector resolution: 10.0000 pixels mm-1
ω scans and/or φ scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 2001)
Tmin = 0.924, Tmax = 0.941
7362 measured reflections
2551 independent reflections
2296 reflections with I > 2σ(I)
Rint = 0.043
θmax = 25.0°, θmin = 2.2°
h = −17→17
k = −12→11
l = −20→22
Refinement
Refinement on F2
Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.049
wR(F2) = 0.135
S = 1.24
2551 reflections
183 parameters
0 restraints
Primary atom site location: structure-invariant
direct methods
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
w = 1/[σ2(Fo2) + 10.5312P]
where P = (Fo2 + 2Fc2)/3
(Δ/σ)max < 0.001
Δρmax = 0.41 e Å−3
Δρmin = −0.42 e Å−3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is
used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based
on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzU
iso*/Ueq
Cl1 0.5000 0.80128 (11) 0.7500 0.0264 (3)
P1 0.53916 (5) 0.32003 (8) 0.82724 (4) 0.0175 (2)
N1 0.5000 0.2594 (4) 0.7500 0.0200 (8)
C1 0.45695 (19) 0.4133 (3) 0.86442 (16) 0.0177 (6)
supporting information
sup-4
Acta Cryst. (2010). E66, o3185
C2 0.4358 (2) 0.5349 (3) 0.83690 (17) 0.0206 (7)
H2 0.4700 0.5724 0.8038 0.030 (3)*
C3 0.3645 (2) 0.6011 (3) 0.85815 (19) 0.0262 (8)
H3 0.3505 0.6844 0.8399 0.030 (3)*
C4 0.3135 (2) 0.5461 (4) 0.90596 (19) 0.0293 (8)
H4 0.2639 0.5908 0.9193 0.030 (3)*
C5 0.3353 (2) 0.4258 (3) 0.9342 (2) 0.0288 (8)
H5 0.3009 0.3891 0.9675 0.030 (3)*
C6 0.4070 (2) 0.3582 (3) 0.91427 (18) 0.0258 (7)
H6 0.4220 0.2761 0.9340 0.030 (3)*
C7 0.57029 (19) 0.1897 (3) 0.88839 (17) 0.0182 (7)
C8 0.6079 (2) 0.2160 (3) 0.96055 (18) 0.0247 (7)
H8 0.6183 0.3018 0.9758 0.030 (3)*
C9 0.6297 (2) 0.1184 (3) 1.00954 (18) 0.0260 (7)
H9 0.6548 0.1365 1.0585 0.030 (3)*
C10 0.6148 (2) −0.0064 (3) 0.98669 (19) 0.0261 (8)
H10 0.6298 −0.0738 1.0204 0.030 (3)*
C11 0.5784 (2) −0.0344 (3) 0.91551 (19) 0.0242 (7)
H11 0.5685 −0.1204 0.9005 0.030 (3)*
C12 0.5563 (2) 0.0643 (3) 0.86618 (18) 0.0224 (7)
H12 0.5316 0.0457 0.8171 0.030 (3)*
C13 0.6391 (2) 0.4148 (3) 0.82560 (17) 0.0216 (7)
C14 0.6520 (2) 0.5357 (3) 0.85535 (18) 0.0232 (7)
H14 0.6081 0.5726 0.8804 0.030 (3)*
C15 0.7303 (2) 0.6030 (3) 0.8482 (2) 0.0299 (8)
H15 0.7385 0.6868 0.8674 0.030 (3)*
C16 0.7957 (2) 0.5487 (4) 0.8137 (2) 0.0314 (9)
H16 0.8488 0.5950 0.8098 0.030 (3)*
C17 0.7839 (2) 0.4266 (3) 0.78468 (19) 0.0275 (8)
H17 0.8292 0.3888 0.7616 0.030 (3)*
C18 0.7054 (2) 0.3602 (3) 0.78966 (18) 0.0249 (7)
H18 0.6964 0.2777 0.7688 0.030 (3)*
Atomic displacement parameters (Å2)
U11 U22 U33 U12 U13 U23
Cl1 0.0250 (6) 0.0205 (6) 0.0352 (7) 0.000 0.0095 (5) 0.000
P1 0.0157 (4) 0.0178 (4) 0.0194 (4) 0.0007 (3) 0.0037 (3) 0.0004 (3)
N1 0.0140 (17) 0.026 (2) 0.0199 (19) 0.000 0.0030 (14) 0.000
C1 0.0184 (15) 0.0189 (16) 0.0147 (14) 0.0012 (12) −0.0006 (12) −0.0041 (13)
C2 0.0217 (16) 0.0205 (17) 0.0194 (16) −0.0022 (13) 0.0028 (13) −0.0014 (14)
C3 0.0228 (16) 0.0240 (18) 0.0309 (18) 0.0045 (14) 0.0014 (14) −0.0018 (15)
C4 0.0186 (16) 0.036 (2) 0.033 (2) 0.0056 (14) 0.0048 (14) −0.0104 (17)
C5 0.0274 (18) 0.0265 (18) 0.036 (2) −0.0023 (15) 0.0161 (15) −0.0018 (17)
C6 0.0232 (17) 0.0279 (18) 0.0270 (18) 0.0008 (14) 0.0057 (14) 0.0038 (15)
C7 0.0161 (15) 0.0199 (16) 0.0192 (16) 0.0005 (12) 0.0044 (12) 0.0004 (13)
C8 0.0263 (17) 0.0210 (17) 0.0272 (18) −0.0010 (14) 0.0055 (14) 0.0006 (15)
C9 0.0280 (18) 0.0304 (19) 0.0188 (16) 0.0008 (14) 0.0012 (13) 0.0025 (15)
supporting information
sup-5
Acta Cryst. (2010). E66, o3185
C10 0.0230 (17) 0.0273 (18) 0.0287 (19) 0.0028 (14) 0.0062 (14) 0.0135 (15)
C11 0.0252 (17) 0.0151 (16) 0.0330 (19) 0.0000 (13) 0.0072 (14) 0.0033 (14)
C12 0.0177 (15) 0.0261 (18) 0.0236 (17) −0.0016 (13) 0.0036 (13) −0.0018 (15)
C13 0.0163 (15) 0.0246 (17) 0.0238 (17) 0.0001 (13) 0.0026 (12) 0.0033 (14)
C14 0.0235 (17) 0.0186 (16) 0.0276 (18) −0.0014 (13) 0.0040 (13) −0.0024 (14)
C15 0.0240 (17) 0.0280 (19) 0.036 (2) −0.0052 (15) −0.0003 (15) −0.0018 (16)
C16 0.0163 (16) 0.043 (2) 0.033 (2) −0.0046 (15) −0.0021 (14) 0.0123 (17)
C17 0.0205 (16) 0.032 (2) 0.0305 (19) 0.0033 (14) 0.0050 (14) 0.0089 (16)
C18 0.0195 (16) 0.0311 (19) 0.0237 (17) 0.0026 (14) 0.0020 (13) −0.0027 (15)
Geometric parameters (Å, º)
P1—N1 1.5984 (18) C8—H8 0.9500
P1—C7 1.795 (3) C9—C10 1.385 (5)
P1—C1 1.802 (3) C9—H9 0.9500
P1—C13 1.811 (3) C10—C11 1.384 (5)
N1—P1i1.5984 (18) C10—H10 0.9500
C1—C2 1.394 (4) C11—C12 1.390 (5)
C1—C6 1.409 (5) C11—H11 0.9500
C2—C3 1.390 (5) C12—H12 0.9500
C2—H2 0.9500 C13—C14 1.386 (5)
C3—C4 1.390 (5) C13—C18 1.410 (4)
C3—H3 0.9500 C14—C15 1.401 (5)
C4—C5 1.387 (5) C14—H14 0.9500
C4—H4 0.9500 C15—C16 1.383 (5)
C5—C6 1.392 (5) C15—H15 0.9500
C5—H5 0.9500 C16—C17 1.392 (5)
C6—H6 0.9500 C16—H16 0.9500
C7—C12 1.386 (4) C17—C18 1.391 (5)
C7—C8 1.401 (4) C17—H17 0.9500
C8—C9 1.377 (5) C18—H18 0.9500
N1—P1—C7 106.82 (17) C8—C9—C10 119.3 (3)
N1—P1—C1 112.50 (12) C8—C9—H9 120.3
C7—P1—C1 107.33 (15) C10—C9—H9 120.3
N1—P1—C13 113.24 (13) C11—C10—C9 121.1 (3)
C7—P1—C13 107.11 (14) C11—C10—H10 119.5
C1—P1—C13 109.49 (15) C9—C10—H10 119.5
P1—N1—P1i133.0 (3) C10—C11—C12 119.5 (3)
C2—C1—C6 120.2 (3) C10—C11—H11 120.3
C2—C1—P1 119.2 (2) C12—C11—H11 120.3
C6—C1—P1 120.2 (2) C7—C12—C11 120.1 (3)
C3—C2—C1 119.7 (3) C7—C12—H12 119.9
C3—C2—H2 120.1 C11—C12—H12 119.9
C1—C2—H2 120.1 C14—C13—C18 119.7 (3)
C4—C3—C2 120.4 (3) C14—C13—P1 124.1 (2)
C4—C3—H3 119.8 C18—C13—P1 116.1 (3)
C2—C3—H3 119.8 C13—C14—C15 119.5 (3)
supporting information
sup-6
Acta Cryst. (2010). E66, o3185
C5—C4—C3 119.9 (3) C13—C14—H14 120.3
C5—C4—H4 120.0 C15—C14—H14 120.3
C3—C4—H4 120.0 C16—C15—C14 120.7 (3)
C4—C5—C6 120.7 (3) C16—C15—H15 119.6
C4—C5—H5 119.6 C14—C15—H15 119.6
C6—C5—H5 119.6 C15—C16—C17 120.2 (3)
C5—C6—C1 119.0 (3) C15—C16—H16 119.9
C5—C6—H6 120.5 C17—C16—H16 119.9
C1—C6—H6 120.5 C18—C17—C16 119.6 (3)
C12—C7—C8 119.5 (3) C18—C17—H17 120.2
C12—C7—P1 121.5 (2) C16—C17—H17 120.2
C8—C7—P1 118.9 (2) C17—C18—C13 120.3 (3)
C9—C8—C7 120.5 (3) C17—C18—H18 119.9
C9—C8—H8 119.8 C13—C18—H18 119.9
C7—C8—H8 119.8
C7—P1—N1—P1i−179.94 (11) C12—C7—C8—C9 −0.9 (5)
C1—P1—N1—P1i62.54 (12) P1—C7—C8—C9 177.8 (2)
C13—P1—N1—P1i−62.27 (13) C7—C8—C9—C10 0.4 (5)
N1—P1—C1—C2 −76.9 (3) C8—C9—C10—C11 0.1 (5)
C7—P1—C1—C2 165.9 (2) C9—C10—C11—C12 −0.1 (5)
C13—P1—C1—C2 50.0 (3) C8—C7—C12—C11 0.9 (5)
N1—P1—C1—C6 95.5 (3) P1—C7—C12—C11 −177.8 (2)
C7—P1—C1—C6 −21.7 (3) C10—C11—C12—C7 −0.4 (5)
C13—P1—C1—C6 −137.7 (3) N1—P1—C13—C14 132.3 (3)
C6—C1—C2—C3 −0.8 (5) C7—P1—C13—C14 −110.2 (3)
P1—C1—C2—C3 171.6 (2) C1—P1—C13—C14 5.9 (3)
C1—C2—C3—C4 −0.8 (5) N1—P1—C13—C18 −46.0 (3)
C2—C3—C4—C5 1.7 (5) C7—P1—C13—C18 71.5 (3)
C3—C4—C5—C6 −1.0 (5) C1—P1—C13—C18 −172.5 (2)
C4—C5—C6—C1 −0.5 (5) C18—C13—C14—C15 1.1 (5)
C2—C1—C6—C5 1.4 (5) P1—C13—C14—C15 −177.2 (3)
P1—C1—C6—C5 −170.9 (3) C13—C14—C15—C16 −1.8 (5)
N1—P1—C7—C12 −2.0 (3) C14—C15—C16—C17 0.8 (5)
C1—P1—C7—C12 118.9 (3) C15—C16—C17—C18 1.0 (5)
C13—P1—C7—C12 −123.6 (3) C16—C17—C18—C13 −1.7 (5)
N1—P1—C7—C8 179.3 (2) C14—C13—C18—C17 0.7 (5)
C1—P1—C7—C8 −59.8 (3) P1—C13—C18—C17 179.1 (3)
C13—P1—C7—C8 57.7 (3)
Symmetry code: (i) −x+1, y, −z+3/2.
Available via license: CC BY 2.0
Content may be subject to copyright.