Guanidinium L-glutamate

Article (PDF Available)inActa Crystallographica Section E Structure Reports Online 66(Pt 10):o2679 · October 2010with54 Reads
DOI: 10.1107/S1600536810036354 · Source: PubMed
Abstract
In the title compound, CH6N3 +·C5H8NO4 −, there are two independent cations and two independent anions in the asymmetric unit. In the crystal structure, cations and anions are linked by inter­molecular N—H⋯O hydrogen bonds into a three-dimensional network.

Figures

Guanidinium L-glutamate
Bing Peng, Qingrong Peng, Wenfeng Zhou* and Zhiqiang
Zhou‡
Department of Applied Chemistry, China Agricultural University, Yuanmingyuan,
West Road 2, Haidian District, Beijing 100194, People’s Republic of China
Correspondence e-mail: wenfengzhou@cau.edu.cn
Received 31 August 2010; accepted 10 September 2010
Key indicators: single-crystal X-ray study; T = 150 K; mean (C–C) = 0.003 A
˚
;
R factor = 0.031; wR factor = 0.081; data-to-parameter ratio = 8.7.
In the title compound, CH
6
N
3
+
C
5
H
8
NO
4
, there are two
independent cations and two independent anions in the
asymmetric unit. In the crystal structure, cations and anions
are linked by intermolecular N—HO hydrogen bonds into a
three-dimensional network.
Related literature
For an early report of salts formed from amino acids and
guanidines, see: Armstrong (1956).
Experimental
Crystal data
CH
6
N
3
+
C
5
H
8
NO
4
M
r
= 206.21
Monoclinic, P2
1
a = 8.7793 (7) A
˚
b = 10.8729 (10) A
˚
c = 10.0801 (9) A
˚
= 104.552 (1)
V = 931.34 (14) A
˚
3
Z =4
Mo K radiation
= 0.12 mm
1
T = 150 K
0.42 0.26 0.20 mm
Data collection
Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T
min
= 0.950, T
max
= 0.976
5501 measured reflections
2220 independent reflections
2087 reflections with I >2(I)
R
int
= 0.021
Refinement
R[F
2
>2(F
2
)] = 0.031
wR(F
2
) = 0.081
S = 1.06
2220 reflections
255 parameters
1 restraint
H-atom parameters constrained
max
= 0.30 e A
˚
3
min
= 0.23 e A
˚
3
Table 1
Hydrogen-bond geometry (A
˚
,
).
D—HAD—H HADAD—HA
N1—H1AO8 0.91 1.89 2.795 (2) 179
N1—H1BO4
i
0.91 1.84 2.738 (2) 170
N1—H1CO2
i
0.91 2.13 3.017 (2) 165
N2—H2AO2
ii
0.91 2.09 2.998 (2) 173
N2—H2BO7
iii
0.91 2.16 2.740 (2) 120
N2—H2CO5
iii
0.91 1.92 2.817 (3) 170
N3—H3AO2
i
0.88 2.08 2.900 (3) 154
N3—H3BO3 0.88 2.08 2.841 (3) 145
N4—H4AO3
iv
0.88 1.95 2.826 (2) 173
N4—H4BO1
i
0.88 2.22 3.095 (2) 170
N5—H5AO4
iv
0.88 1.96 2.831 (2) 172
N5—H5BO6 0.88 2.35 3.092 (3) 142
N6—H6AO6 0.88 2.04 2.897 (2) 165
N6—H6BO8
v
0.88 1.97 2.824 (2) 164
N7—H7AO5 0.88 2.00 2.851 (2) 163
N7—H7BO8
vi
0.88 2.02 2.775 (3) 143
N8—H8AO7
v
0.88 2.08 2.954 (3) 170
N8—H8BO1
vi
0.88 2.23 2.953 (3) 140
Symmetry codes: (i) x þ 1; y þ
1
2
; z; (ii) x; y; z þ 1; (iii) x þ 1; y
1
2
; z þ 1; (iv)
x þ 2; y þ
1
2
; z þ 1; (v) x þ 1; y; z þ 1; (vi) x þ 1; y þ
1
2
; z þ 1.
Data collection: SMART (Bruker, 1997); cell refinement: SAINT
(Bruker, 1997); data reduction: SAINT; program(s) used to solve
structure: SHELXTL (Sheldrick, 2008); program(s) used to refine
structure: SHELXTL; molecular graphics: PLATON (Spek, 2009);
software used to prepare material for publication: SHELXTL.
This work was supported by NSFC (project No. 20772210)
and the Scientific Research Foundation for Returned Over-
seas Chinese Scholars, State Education Ministry. The authors
acknowledge Dr Deng Xuebin for collecting the data at the
Testing Center, College of Chemistry, Beijing Normal
University.
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: LH5125).
References
Armstrong, M. D. (1956). J. Org. Chem. 21, 503–505.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,
USA.
Sheldrick, G. M. (1996). SADABS. University of Go
¨
ttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
organic compounds
Acta Cryst. (2010). E66, o2679 doi:10.1107/S1600536810036354 Peng et al. o2679
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
‡ Additional corresponding author, e-mail: zqzhou@cau.edu.cn.
supplementary materials
supplementary materials
sup-1
Acta Cryst. (2010). E66, o2679 [ doi:10.1107/S1600536810036354 ]
Guanidinium L-glutamate
B. Peng, Q. Peng, W. Zhou and Z. Zhou
Comment
To better understand the formation of complex salts between a guanidine compounds and amino acids we carried out the
crystal structure determination of the title compound. The asymmetric unit of the title compound is shown in Fig. 1. There
are two independent cations and two indpendent anions in the asymmetric unit. In the crystal structure, cations and anions
are linked by intramolecular N—H···O hydrogen bonds into a three-dimensional network (see Fig. 2).
Experimental
L-Glutamic acid (1.47 g.) and guanidine carbonate (0.90 g) were suspended in 10 ml of water. When the evolution of CO
2
had ceased the solution was diluted with 20 ml of acetone, and evaporated to a clear syrup. The syrup was dissolved in 30
ml of absolute methanol to yield a clear solution, and was allowed to stand overnight at room temperature. This solution
was then placed in a fume hood for another day, whereupon the crystals of the title compound were collected and dried.
Refinement
In the absence of significant anomalous dispersion effects Friedel pairs were merged. The absolute configuation is known
from the starting material. H atoms were placed in calculated positions (C—H = 0.99 or 1.00 Å, N—H = 0.88 or 0.91 Å)
and were refined as riding, with U
iso
(H) = 1.2U
eq
(C,N) or 1.5
eq
(N) for –NH
3
groups.
Figures
Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the
30% probability level.
Fig. 2. Part of the crystal structure of the title compound with hydrogen bonds shown as
dashed lines.
bis(carbamimidoylazanium) (2R)-2-aminopentanedioate
Crystal data
CH
6
N
3
+
·C
5
H
8
NO
4
F(000) = 440
supplementary materials
sup-2
M
r
= 206.21
D
x
= 1.471 Mg m
−3
Monoclinic, P2
1
Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2748 reflections
a = 8.7793 (7) Å
θ = 2.4–27.5°
b = 10.8729 (10) Å
µ = 0.12 mm
−1
c = 10.0801 (9) Å T = 150 K
β = 104.552 (1)° Prism, colourless
V = 931.34 (14) Å
3
0.42 × 0.26 × 0.20 mm
Z = 4
Data collection
Bruker SMART APEX
diffractometer
2220 independent reflections
Radiation source: fine-focus sealed tube
2087 reflections with I > 2σ(I)
graphite
R
int
= 0.021
φ and ω scans
θ
max
= 27.5°, θ
min
= 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = −11→10
T
min
= 0.950, T
max
= 0.976
k = −14→9
5501 measured reflections
l = −8→13
Refinement
Refinement on F
2
Primary atom site location: structure-invariant direct
methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F
2
> 2σ(F
2
)] = 0.031
Hydrogen site location: inferred from neighbouring
sites
wR(F
2
) = 0.081
H-atom parameters constrained
S = 1.06
w = 1/[σ
2
(F
o
2
) + (0.044P)
2
+ 0.2149P]
where P = (F
o
2
+ 2F
c
2
)/3
2220 reflections
(Δ/σ)
max
< 0.001
255 parameters
Δρ
max
= 0.30 e Å
−3
1 restraint
Δρ
min
= −0.22 e Å
−3
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-
rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F
2
against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F
2
, convention-
al R-factors R are based on F, with F set to zero for negative F
2
. The threshold expression of F
2
> σ(F
2
) is used only for calculating R-
factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F
2
are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.
supplementary materials
sup-3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
2
)
x y z
U
iso
*/U
eq
C1 0.3633 (2) 0.4498 (2) −0.1328 (2) 0.0157 (4)
C2 0.4808 (2) 0.5516 (2) −0.06507 (19) 0.0152 (4)
H2 0.5234 0.5892 −0.1389 0.018*
C3 0.6207 (2) 0.5030 (2) 0.0442 (2) 0.0175 (4)
H3C 0.6924 0.5723 0.0803 0.021*
H3D 0.6793 0.4434 0.0016 0.021*
C4 0.5727 (2) 0.4405 (2) 0.1632 (2) 0.0185 (4)
H4C 0.4937 0.3761 0.1264 0.022*
H4D 0.5227 0.5020 0.2111 0.022*
C5 0.7121 (2) 0.3823 (2) 0.2661 (2) 0.0161 (4)
C6 0.6284 (3) 0.5883 (2) 0.6253 (2) 0.0170 (4)
C7 0.5001 (2) 0.5088 (2) 0.5315 (2) 0.0142 (4)
H7 0.5153 0.5159 0.4368 0.017*
C8 0.3304 (2) 0.5466 (2) 0.52340 (19) 0.0164 (4)
H8C 0.3259 0.6367 0.5357 0.020*
H8D 0.2954 0.5067 0.5990 0.020*
C9 0.2181 (2) 0.5106 (2) 0.3863 (2) 0.0171 (4)
H9A 0.2379 0.4240 0.3655 0.020*
H9B 0.1083 0.5165 0.3946 0.020*
C10 0.2368 (2) 0.5920 (2) 0.2679 (2) 0.0156 (4)
C11 0.9131 (2) 0.7443 (2) 0.4492 (2) 0.0176 (4)
C12 0.9193 (3) 0.7368 (2) 0.9641 (2) 0.0179 (4)
N1 0.3944 (2) 0.65067 (18) −0.01100 (17) 0.0155 (4)
H1A 0.3351 0.6164 0.0415 0.023*
H1B 0.3307 0.6918 −0.0823 0.023*
H1C 0.4648 0.7040 0.0407 0.023*
N2 0.5301 (2) 0.37747 (18) 0.57395 (19) 0.0183 (4)
H2A 0.4960 0.3633 0.6507 0.027*
H2B 0.6351 0.3617 0.5918 0.027*
H2C 0.4774 0.3275 0.5052 0.027*
N3 0.7857 (2) 0.6972 (2) 0.3634 (2) 0.0240 (4)
H3A 0.7411 0.7361 0.2870 0.029*
H3B 0.7461 0.6272 0.3832 0.029*
N4 0.9733 (2) 0.84922 (19) 0.42024 (19) 0.0204 (4)
H4A 1.0578 0.8797 0.4770 0.024*
H4B 0.9288 0.8887 0.3441 0.024*
N5 0.9797 (2) 0.68433 (19) 0.5639 (2) 0.0215 (4)
H5A 1.0643 0.7145 0.6209 0.026*
H5B 0.9394 0.6144 0.5829 0.026*
N6 0.9603 (2) 0.62410 (19) 0.9389 (2) 0.0242 (4)
H6A 0.9036 0.5832 0.8682 0.029*
H6B 1.0442 0.5899 0.9926 0.029*
N7 0.7924 (2) 0.78798 (19) 0.88260 (19) 0.0222 (4)
H7A 0.7361 0.7467 0.8121 0.027*
H7B 0.7648 0.8631 0.8991 0.027*
supplementary materials
sup-4
N8 1.0012 (2) 0.8000 (2) 1.0716 (2) 0.0248 (5)
H8A 1.0844 0.7668 1.1274 0.030*
H8B 0.9721 0.8751 1.0868 0.030*
O1 0.22034 (18) 0.47085 (14) −0.15334 (15) 0.0197 (3)
O2 0.42560 (19) 0.35290 (15) −0.16612 (15) 0.0206 (3)
O3 0.76473 (19) 0.43703 (16) 0.37806 (16) 0.0221 (4)
O4 0.76678 (19) 0.28334 (16) 0.23297 (16) 0.0236 (4)
O5 0.6030 (2) 0.70163 (15) 0.62702 (17) 0.0234 (4)
O6 0.75073 (18) 0.53379 (16) 0.68837 (16) 0.0225 (4)
O7 0.2657 (2) 0.70271 (16) 0.28796 (17) 0.0277 (4)
O8 0.21550 (17) 0.54149 (15) 0.15054 (14) 0.0184 (3)
Atomic displacement parameters (Å
2
)
U
11
U
22
U
33
U
12
U
13
U
23
C1 0.0218 (10) 0.0148 (10) 0.0098 (9) −0.0013 (8) 0.0027 (8) 0.0026 (8)
C2 0.0177 (9) 0.0146 (10) 0.0126 (8) −0.0017 (8) 0.0025 (7) −0.0002 (8)
C3 0.0153 (9) 0.0193 (10) 0.0165 (10) 0.0003 (9) 0.0013 (8) −0.0003 (8)
C4 0.0159 (10) 0.0222 (12) 0.0161 (10) 0.0029 (9) 0.0017 (8) −0.0005 (9)
C5 0.0153 (9) 0.0163 (10) 0.0158 (10) 0.0001 (8) 0.0024 (8) 0.0010 (8)
C6 0.0180 (10) 0.0187 (11) 0.0135 (9) −0.0030 (9) 0.0024 (8) 0.0002 (8)
C7 0.0177 (9) 0.0134 (10) 0.0110 (9) 0.0014 (8) 0.0023 (7) 0.0009 (8)
C8 0.0167 (9) 0.0203 (10) 0.0115 (9) 0.0013 (8) 0.0024 (7) 0.0006 (8)
C9 0.0166 (9) 0.0184 (10) 0.0151 (9) −0.0024 (8) 0.0021 (7) 0.0000 (8)
C10 0.0126 (9) 0.0167 (10) 0.0155 (10) 0.0014 (8) −0.0005 (7) 0.0014 (8)
C11 0.0169 (10) 0.0180 (11) 0.0182 (10) 0.0029 (8) 0.0048 (8) −0.0029 (8)
C12 0.0186 (10) 0.0176 (11) 0.0169 (10) 0.0009 (8) 0.0035 (8) 0.0015 (8)
N1 0.0186 (8) 0.0142 (8) 0.0122 (8) −0.0007 (7) 0.0008 (6) 0.0010 (7)
N2 0.0202 (9) 0.0136 (9) 0.0184 (9) 0.0008 (7) −0.0003 (7) −0.0010 (7)
N3 0.0246 (10) 0.0203 (10) 0.0214 (9) −0.0026 (8) −0.0052 (8) 0.0023 (8)
N4 0.0205 (9) 0.0211 (10) 0.0172 (9) −0.0025 (8) 0.0001 (7) 0.0001 (8)
N5 0.0189 (9) 0.0211 (10) 0.0206 (9) −0.0030 (8) −0.0024 (7) 0.0020 (8)
N6 0.0237 (10) 0.0209 (11) 0.0233 (10) 0.0065 (8) −0.0028 (8) −0.0031 (8)
N7 0.0240 (10) 0.0171 (9) 0.0209 (9) 0.0043 (8) −0.0032 (8) −0.0035 (8)
N8 0.0284 (10) 0.0203 (11) 0.0195 (9) 0.0056 (8) −0.0057 (8) −0.0024 (8)
O1 0.0183 (7) 0.0212 (9) 0.0175 (7) −0.0006 (6) 0.0010 (6) −0.0013 (6)
O2 0.0253 (8) 0.0183 (8) 0.0167 (8) 0.0026 (7) 0.0024 (6) −0.0035 (6)
O3 0.0235 (8) 0.0218 (9) 0.0171 (8) 0.0053 (7) −0.0020 (6) −0.0046 (7)
O4 0.0253 (8) 0.0208 (8) 0.0199 (8) 0.0068 (7) −0.0032 (6) −0.0048 (7)
O5 0.0280 (9) 0.0137 (8) 0.0232 (8) −0.0024 (7) −0.0033 (7) 0.0003 (6)
O6 0.0191 (8) 0.0201 (9) 0.0234 (8) 0.0000 (7) −0.0035 (6) −0.0009 (7)
O7 0.0405 (10) 0.0178 (8) 0.0195 (8) −0.0069 (8) −0.0025 (7) 0.0026 (7)
O8 0.0220 (7) 0.0185 (8) 0.0143 (7) 0.0015 (6) 0.0039 (6) 0.0016 (6)
Geometric parameters (Å, °)
C1—O1 1.241 (3) C10—O7 1.237 (3)
C1—O2 1.271 (3) C10—O8 1.275 (3)
C1—C2 1.549 (3) C11—N4 1.321 (3)
supplementary materials
sup-5
C2—N1 1.497 (3) C11—N5 1.328 (3)
C2—C3 1.524 (3) C11—N3 1.332 (3)
C2—H2 1.0000 C12—N6 1.319 (3)
C3—C4 1.527 (3) C12—N7 1.329 (3)
C3—H3C 0.9900 C12—N8 1.331 (3)
C3—H3D 0.9900 N1—H1A 0.9100
C4—C5 1.529 (3) N1—H1B 0.9100
C4—H4C 0.9900 N1—H1C 0.9100
C4—H4D 0.9900 N2—H2A 0.9100
C5—O4 1.257 (3) N2—H2B 0.9100
C5—O3 1.257 (3) N2—H2C 0.9100
C6—O6 1.251 (3) N3—H3A 0.8800
C6—O5 1.253 (3) N3—H3B 0.8800
C6—C7 1.541 (3) N4—H4A 0.8800
C7—N2 1.495 (3) N4—H4B 0.8800
C7—C8 1.528 (3) N5—H5A 0.8800
C7—H7 1.0000 N5—H5B 0.8800
C8—C9 1.533 (3) N6—H6A 0.8800
C8—H8C 0.9900 N6—H6B 0.8800
C8—H8D 0.9900 N7—H7A 0.8800
C9—C10 1.527 (3) N7—H7B 0.8800
C9—H9A 0.9900 N8—H8A 0.8800
C9—H9B 0.9900 N8—H8B 0.8800
O1—C1—O2 126.4 (2) C10—C9—H9B 109.1
O1—C1—C2 118.4 (2) C8—C9—H9B 109.1
O2—C1—C2 115.21 (18) H9A—C9—H9B 107.8
N1—C2—C3 112.11 (16) O7—C10—O8 123.2 (2)
N1—C2—C1 109.42 (16) O7—C10—C9 119.6 (2)
C3—C2—C1 113.44 (18) O8—C10—C9 117.14 (19)
N1—C2—H2 107.2 N4—C11—N5 120.2 (2)
C3—C2—H2 107.2 N4—C11—N3 120.4 (2)
C1—C2—H2 107.2 N5—C11—N3 119.4 (2)
C2—C3—C4 112.99 (17) N6—C12—N7 119.7 (2)
C2—C3—H3C 109.0 N6—C12—N8 121.3 (2)
C4—C3—H3C 109.0 N7—C12—N8 119.0 (2)
C2—C3—H3D 109.0 C2—N1—H1A 109.5
C4—C3—H3D 109.0 C2—N1—H1B 109.5
H3C—C3—H3D 107.8 H1A—N1—H1B 109.5
C3—C4—C5 112.67 (17) C2—N1—H1C 109.5
C3—C4—H4C 109.1 H1A—N1—H1C 109.5
C5—C4—H4C 109.1 H1B—N1—H1C 109.5
C3—C4—H4D 109.1 C7—N2—H2A 109.5
C5—C4—H4D 109.1 C7—N2—H2B 109.5
H4C—C4—H4D 107.8 H2A—N2—H2B 109.5
O4—C5—O3 124.40 (19) C7—N2—H2C 109.5
O4—C5—C4 117.95 (18) H2A—N2—H2C 109.5
O3—C5—C4 117.6 (2) H2B—N2—H2C 109.5
O6—C6—O5 126.2 (2) C11—N3—H3A 120.0
O6—C6—C7 116.6 (2) C11—N3—H3B 120.0
supplementary materials
sup-6
O5—C6—C7 117.06 (19) H3A—N3—H3B 120.0
N2—C7—C8 111.79 (18) C11—N4—H4A 120.0
N2—C7—C6 108.12 (16) C11—N4—H4B 120.0
C8—C7—C6 115.78 (18) H4A—N4—H4B 120.0
N2—C7—H7 106.9 C11—N5—H5A 120.0
C8—C7—H7 106.9 C11—N5—H5B 120.0
C6—C7—H7 106.9 H5A—N5—H5B 120.0
C7—C8—C9 112.17 (17) C12—N6—H6A 120.0
C7—C8—H8C 109.2 C12—N6—H6B 120.0
C9—C8—H8C 109.2 H6A—N6—H6B 120.0
C7—C8—H8D 109.2 C12—N7—H7A 120.0
C9—C8—H8D 109.2 C12—N7—H7B 120.0
H8C—C8—H8D 107.9 H7A—N7—H7B 120.0
C10—C9—C8 112.69 (17) C12—N8—H8A 120.0
C10—C9—H9A 109.1 C12—N8—H8B 120.0
C8—C9—H9A 109.1 H8A—N8—H8B 120.0
O1—C1—C2—N1 11.3 (3) O6—C6—C7—N2 18.9 (3)
O2—C1—C2—N1 −170.89 (17) O5—C6—C7—N2 −163.9 (2)
O1—C1—C2—C3 137.29 (19) O6—C6—C7—C8 145.18 (19)
O2—C1—C2—C3 −44.9 (2) O5—C6—C7—C8 −37.6 (3)
N1—C2—C3—C4 63.7 (2) N2—C7—C8—C9 −83.4 (2)
C1—C2—C3—C4 −60.8 (2) C6—C7—C8—C9 152.21 (18)
C2—C3—C4—C5 174.99 (19) C7—C8—C9—C10 −73.5 (2)
C3—C4—C5—O4 −75.2 (3) C8—C9—C10—O7 −36.4 (3)
C3—C4—C5—O3 104.4 (2) C8—C9—C10—O8 146.12 (19)
Hydrogen-bond geometry (Å, °)
D—H···A D—H H···A D···A D—H···A
N1—H1A···O8 0.91 1.89 2.795 (2) 179
N1—H1B···O4
i
0.91 1.84 2.738 (2) 170
N1—H1C···O2
i
0.91 2.13 3.017 (2) 165
N2—H2A···O2
ii
0.91 2.09 2.998 (2) 173
N2—H2B···O7
iii
0.91 2.16 2.740 (2) 120
N2—H2C···O5
iii
0.91 1.92 2.817 (3) 170
N3—H3A···O2
i
0.88 2.08 2.900 (3) 154
N3—H3B···O3 0.88 2.08 2.841 (3) 145
N4—H4A···O3
iv
0.88 1.95 2.826 (2) 173
N4—H4B···O1
i
0.88 2.22 3.095 (2) 170
N5—H5A···O4
iv
0.88 1.96 2.831 (2) 172
N5—H5B···O6 0.88 2.35 3.092 (3) 142
N6—H6A···O6 0.88 2.04 2.897 (2) 165
N6—H6B···O8
v
0.88 1.97 2.824 (2) 164
N7—H7A···O5 0.88 2.00 2.851 (2) 163
N7—H7B···O8
vi
0.88 2.02 2.775 (3) 143
N8—H8A···O7
v
0.88 2.08 2.954 (3) 170
supplementary materials
sup-7
N8—H8B···O1
vi
0.88 2.23 2.953 (3) 140
Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x, y, z+1; (iii) −x+1, y−1/2, −z+1; (iv) −x+2, y+1/2, −z+1; (v) x+1, y, z+1; (vi) −x+1, y+1/2,
z+1.
supplementary materials
sup-8
Fig. 1
supplementary materials
sup-9
Fig. 2
  • [Show abstract] [Hide abstract] ABSTRACT: Good optical quality single crystal of guanidinium l-glutamate is grown by slow evaporation solution growth technique. The cell parameters and crystallinity are determined from the single crystal and powder X-ray diffraction analysis. The formation of synthesized compound was confirmed by FT-IR and FT-Raman spectroscopic analysis. Wide band gap of 4.98eV with high transmittance up to 2000nm is observed for the grown crystal in UV-Vis-NIR spectral analysis. The optical constants such as refractive index and extinction coefficient of the grown crystal are obtained as 2.1 and 8.64×10(-6) respectively. The nonlinear optical study reveals that the second harmonic generation efficiency of guanidinium l-glutamate is 2.8 times that of potassium dihydrogen phosphate (KDP). The mechanical stability of the grown crystal was analyzed by Vickers microhardness test and the results are discussed.
    Full-text · Article · Jul 2012
  • [Show abstract] [Hide abstract] ABSTRACT: Salification of new drug substances in order to improve physico-chemical or solid-state properties (e.g. dissolution rate or solubility, appropriate workup process, storage for further industrial and marketing development) is a well-accepted procedure. Amino acids, like aspartic acid, lysine or arginine take a great part in this process and are implicated in several different formulations of therapeutic agent families, including antibiotics (amoxicillin from beta lactam class or cephalexin from cephalosporin class), NSAIDs (ketoprofen, ibuprofen and naproxen from profen family, acetylsalicylic acid) or antiarrhythmic agents (e.g. ajmaline). Even if more than a half of known pharmaceutical molecules possess a salifiable moiety, what can be done for new potential drug entity that cannot be improved by transformation into a salt? In this context, after a brief review of pharmaceutical salts on the market and the implication of amino acids in these formulations, we focus on the advantage of using amino acids even when the target compound is not salifiable by exploiting their zwitterionic potentialities for cocrystal edification. We summarize here a series of new examples coming from literature to support the advantages of broadening the application of amino acids in formulation for new drug substances improvement research for non-salifiable molecules.
    Full-text · Article · Jan 2014

Recommended publications

Discover more