Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals

Division of Otolaryngology and Neuroscience Program, 3C120 School of Medicine, 30 North, 1900 East, Salt Lake City, University of Utah, UT 84132, USA.
Hearing research (Impact Factor: 2.97). 05/2011; 279(1-2):131-9. DOI: 10.1016/j.heares.2011.04.018
Source: PubMed


The dynamics of synaptic transmission between neurons plays a major role in neural information processing. In the cochlear nucleus, auditory nerve synapses have a relatively high release probability and show pronounced synaptic depression that, in conjunction with the variability of interspike intervals, shapes the information transmitted to the postsynaptic cells. Cellular mechanisms have been best analyzed at the endbulb synapses, revealing that the recent history of presynaptic activity plays a complex, non-linear, role in regulating release. Emerging evidence suggests that the dynamics of synaptic function differs according to the target neuron within the cochlear nucleus. One consequence of hearing loss is changes in evoked release at surviving auditory nerve synapses, and in some situations spontaneous release is greatly enhanced. In contrast, even with cochlear ablation, postsynaptic excitability is less affected. The existing evidence suggests that different modes of hearing loss can result in different dynamic patterns of synaptic transmission between the auditory nerve and postsynaptic neurons. These changes in dynamics in turn will affect the efficacy with which different kinds of information about the acoustic environment can be processed by the parallel pathways in the cochlear nucleus.

Download full-text


Available from: Paul B Manis
  • Source
    • "Short-term depression (STD) in a brief time window of <1 s has been described at specialized terminals of auditory nerve fibers, the endbulbs of Held, which contact bushy cells in the cochlear nuclear complex. Here, STD occurs upon stimulation with 100–300 Hz over a period of 150 ms (Oleskevich and Walmsley, 2002; Wang and Manis, 2006, 2008; Wang et al., 2010, 2011). STD was also reported in GABAergic synapses between the inferior colliculus and the medial geniculate body (Venkataraman and Bartlett, 2013). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Short-term plasticity plays a key role in synaptic transmission and has been extensively investigated for excitatory synapses. Much less is known about inhibitory synapses. Here we analyze the performance of glycinergic connections between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) in the auditory brainstem, where high spike rates as well as fast and precise neurotransmission are hallmarks. Analysis was performed in acute mouse slices shortly after hearing onset (postnatal day (P)11) and 8 days later (P19). Stimulation was done at 37°C with 1-400 Hz for 40 s. Moreover, in a novel approach named marathon experiments, a very prolonged stimulation protocol was employed, comprising 10 trials of 1-min challenge and 1-min recovery periods at 50 and 1 Hz, respectively, thus lasting up to 20 min and amounting to >30,000 stimulus pulses. IPSC peak amplitudes displayed short-term depression (STD) and synaptic attenuation in a frequency-dependent manner. No facilitation was observed. STD in the MNTB-LSO connections was less pronounced than reported in the upstream calyx of Held-MNTB connections. At P11, the STD level and the failure rate were slightly lower within the ms-to-s range than at P19. During prolonged stimulation periods lasting 40 s, P19 connections sustained virtually failure-free transmission up to frequencies of 100 Hz, whereas P11 connections did so only up to 50 Hz. In marathon experiments, P11 synapses recuperated reproducibly from synaptic attenuation during all recovery periods, demonstrating a robust synaptic machinery at hearing onset. At 26°C, transmission was severely impaired and comprised abnormally high amplitudes after minutes of silence, indicative of imprecisely regulated vesicle pools. Our study takes a fresh look at synaptic plasticity and stability by extending conventional stimulus periods in the ms-to-s range to minutes. It also provides a framework for future analyses of synaptic plasticity.
    Full-text · Article · Mar 2014 · Frontiers in Neural Circuits
  • [Show abstract] [Hide abstract]
    ABSTRACT: Impulse activity of neurons of brainstem auditory nuclei (medulla dorsal nucleus and midbrain torus semicircularis) of the grass frog (Rana temporaria) was recorded under action of long amplitude-modulated tonal signals. After adaptation of neuronal response to acting stimulus (30–60 s after its onset), we performed a sharp change (by 20–40 dB) of the mean signal level with preservation of unchanged frequency and depth of modulation. We also recorded a change of density impulsation and of degree of its synchronization with the modulation period as well as the phase of maximum reaction at the modulation period and phase of the response every 2 or 4 s. In the adapted state, the sharp change of the mean level had been provided, while maintaining frequency and depth unchanged. During the adaptation to long signals with small modulation indexes the firing rate continuously decreased, but synchronization with envelope usually increased considerably. A sharp rise in the mean level resulted in an increase of firing rate, which could be accompanied either by a continuation of synchronization growth (the effect is more typical of the dorsal nucleus) or by a sharp fall in synchrony with its subsequent slow recovery (the effect is more typical of the torus semicircularis). Nature of the changes following the change of the intensity of the reaction could depend on the signal parameters (initial level, magnitude of the jump, frequency and depth of modulation). The connection between the observed physiological data and the psychophysics of differential intensity coding is discussed.
    No preview · Article · Jan 2013 · Journal of Evolutionary Biochemistry and Physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that humans can robustly perceive phonemes despite substantial variability across speakers, context and natural distortions. This study examines the responses of neurons in primary auditory cortex (A1) to phonetically labeled speech stimuli in clean, additive noise and reverberant conditions. Using a linear decoder [Bialek (1991)] to reconstruct the input stimulus spectrogram from the population response, we observed that spectrograms reconstructed from the neural responses to noisy speech were closer to the original clean spectrograms than to the noisy ones. This indicates that sound representations in A1 serve to enhance information about natural speech signals relative to noise, thus extracting signal from noise. Examining the average reconstructed phoneme spectrograms in clean and noisy speech revealed a remarkable robustness in the encoding of features important for discrimination of different phonemes. In addition, it was found that the strict linear spectro-temporal receptive field (STRF) model of A1 neurons is insufficient to explain the noise robustness observed in the neural data. However, when a non-linear synaptic depression is integrated into the inputs for the STRF model, the noise was reduced in the reconstructed spectrograms similar to what observed with the actual neural data.
    Full-text · Article · Mar 2010 · The Journal of the Acoustical Society of America
Show more