Di-μ-chlorido-bis-({2-[(4-bromo-phen-yl)-imino-meth-yl]pyridine-κN,N'}-chloridomercury(II)).

Article (PDF Available)inActa Crystallographica Section E Structure Reports Online 65(Pt 8):m889 · January 2009with31 Reads
Source: PubMed
Abstract
The unique Hg(II) ion in the title centrosymmetric dinuclear complex, [Hg(2)Cl(4)(C(12)H(9)BrN(2))(2)], is in a distorted trigonal-bipyramidal coordination environment formed by the bis-chelating N-heterocyclic ligand, two bridging Cl atoms and one terminal Cl atom. One of the bridging Hg-Cl bonds is significantly longer than the other.

Figures

Di-l-chlorido-bis({2-[(4-bromophenyl)-
iminomethyl]pyridine-j
2
N,N
000
}chlorido-
mercury(II))
Ali Mahmoudi,
a
* Saeed Dehghanpour,
b
Mehdi Khalaj
c
and
Shabnam Pakravan
a
a
Department of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran,
b
Department of Chemistry, Alzahra University, PO Box 1993891176, Vanak,
Tehran, Iran, and
c
Department of Chemistry, Islamic Azad University, Buinzahra
Branch, Qazvin, Iran
Correspondence e-mail: Mahmoudi_Ali@yahoo.com
Received 11 June 2009; accepted 2 July 2009
Key indicators: single-crystal X-ray study; T = 100 K; mean (C–C) = 0.004 A
˚
;
R factor = 0.019; wR factor = 0.041; data-to-parameter ratio = 24.8.
The unique Hg
II
ion in the title centrosymmetric dinuclear
complex, [Hg
2
Cl
4
(C
12
H
9
BrN
2
)
2
], is in a distorted trigonal–
bipyramidal coordination environment formed by the bis-
chelating N-heterocyclic ligand, two bridging Cl atoms and
one terminal Cl atom. One of the bridging Hg—Cl bonds is
significantly longer than the other.
Related literature
For background information on diimine complexes, see:
Dehghanpour & Mahmoudi (2007); Dehghanpour,
Mahmoudi, Khalaj & Salmanpour (2007). For related crystal
structures, see: Mahmoudi et al. (2009); Dehghanpour,
Mahmoudi, Khalaj, Salmanpour & Adib (2007).
Experimental
Crystal data
[Hg
2
Cl
4
(C
12
H
9
BrN
2
)
2
]
M
r
= 1065.22
Monoclinic, P2
1
=n
a = 7.6697 (2) A
˚
b = 15.0247 (4) A
˚
c = 12.2129 (4) A
˚
= 96.738 (1)
V = 1397.63 (7) A
˚
3
Z =2
Mo K radiation
= 14.24 mm
1
T = 100 K
0.10 0.10 0.05 mm
Data collection
Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
T
min
= 0.280, T
max
= 0.491
17922 measured reflections
4047 independent reflections
3636 reflections with I >2(I)
R
int
= 0.032
Refinement
R[F
2
>2(F
2
)] = 0.019
wR(F
2
) = 0.041
S = 1.01
4047 reflections
163 parameters
H-atom parameters constrained
max
= 0.97 e A
˚
3
min
= 1.15 e A
˚
3
Table 1
Selected geometric parameters (A
˚
,
).
Hg1—N2 2.318 (2)
Hg1—Cl1 2.3799 (7)
Hg1—N1 2.472 (2)
Hg1—Cl2 2.4941 (7)
Hg1—Cl2
i
2.8799 (6)
N2—Hg1—Cl1 129.00 (6)
N2—Hg1—N1 70.58 (7)
Cl1—Hg1—N1 107.12 (5)
N2—Hg1—Cl2 102.20 (6)
Cl1—Hg1—Cl2 128.74 (3)
N1—Hg1—Cl2 90.35 (5)
N2—Hg1—Cl2
i
88.36 (6)
Cl1—Hg1—Cl2
i
90.07 (2)
N1—Hg1—Cl2
i
158.28 (5)
Cl2—Hg1—Cl2
i
88.926 (19)
Hg1—Cl2—Hg1
i
91.074 (19)
Symmetry code: (i) x; y þ 1; z.
Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2;
data reduction: APEX2 ; program(s) used to solve structure:
SHELXTL (Sheldrick, 2008); program(s) used to refine structure:
SHELXTL; molecular graphics: PLATON (Spek, 2009); software
used to prepare material for publication: SHELXTL.
AM acknowledges the Islamic Azad University Research
Council for partial support of this work.
Supplementary data and figures for this paper are available from the
IUCr electronic archives (Reference: LH2844).
References
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Dehghanpour, S. & Mahmoudi, A. (2007). Synth. React. Inorg. Met. Org.
Chem. 37, 35–40.
Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta
Cryst. E63, m2840.
Dehghanpour, S., Mahmoudi, A., Khalaj, M., Salmanpour, S. & Adib, M.
(2007). Acta Cryst. E63, m2841.
Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009).
Acta Cryst. E65, m555.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
metal-organic compounds
Acta Cryst. (2009). E65, m889 doi:10.1107/S1600536809025641 Mahmoudi et al. m889
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
supplementary materials
supplementary materials
sup-1
Acta Cryst. (2009). E65, m889 [ doi:10.1107/S1600536809025641 ]
Di- -chlorido-bis({2-[(4-bromophenyl)iminomethyl]pyridine-
2
N,N'}chloridomercury(II))
A. Mahmoudi, S. Dehghanpour, M. Khalaj and S. Pakravan
Comment
In our ongoing studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with
diimine ligands (Dehghanpour & Mahmoudi, 2007; Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007), we
report herein the crystal structure of the title complex. The title compound was prepared by the reaction of HgCl
2
with
(4-bromophenyl)pyridin-2-ylmethyleneamine.
The molecluar structure of the title complex (I) is shown in (Fig. 1). The unique Hg
II
ion in is in a distorted trigonal-
bipyramidal coordination environment formed by a bis-chelating ligand, two bridging Cl atoms and one terminal Cl atom.
One of the bridging Hg-Cl bonds is significantly longer than the other.
Experimental
The title complex was prepared by the reaction of HgCl
2
and (4-bromophenyl)pyridin-2-ylmethyleneamine (molar ratio
1:1) in acetonitrile at room temperature. The solution was then concentrated under vacuum, and diffusion of diethyl ether
vapor into the concentrated solution gave yellow crystals of (I) in 69% yield. Calc. for C
12
H
9
BrCl
2
HgN
2
: C 27.06, H 1.70,
N 5.26%; found: C 27.01, H 1.72, N 5.20%.
Refinement
The H atom were placed in calcluated positions with C-H = 0.95Å and refined in a a riding-model approximation with
U
iso
(H) = 1.2 U
eq
(C).
Figures
Fig. 1. The molecular structure od the title complex, with displacement ellipsoids drawn at the
50% probability level. H atoms are represented as spheres of arbitrary radius [symmetry code:
(a) -x, -y+1, -z].
Di-µ-chlorido-bis({2-[(4-bromophenyl)iminomethyl]pyridine- κ
2
N,N'}chloridomercury(II))
Crystal data
[Hg
2
Cl
4
(C
12
H
9
BrN
2
)
2
]
F
000
= 976
supplementary materials
sup-2
M
r
= 1065.22
D
x
= 2.531 Mg m
−3
Monoclinic, P2
1
/n
Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 8129 reflections
a = 7.6697 (2) Å
θ = 2.2–29.7º
b = 15.0247 (4) Å
µ = 14.24 mm
−1
c = 12.2129 (4) Å T = 100 K
β = 96.738 (1)º Prism, yellow
V = 1397.63 (7) Å
3
0.10 × 0.10 × 0.05 mm
Z = 2
Data collection
Bruker SMART APEXII CCD area-detector
diffractometer
4047 independent reflections
Radiation source: fine-focus sealed tube
3636 reflections with I > 2σ(I)
Monochromator: graphite
R
int
= 0.032
Detector resolution: 0 pixels mm
-1
θ
max
= 30.0º
T = 100 K
θ
min
= 2.2º
φ and ω scans
h = −10→10
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
k = −21→20
T
min
= 0.280, T
max
= 0.491
l = −17→17
17922 measured reflections
Refinement
Refinement on F
2
Secondary atom site location: difference Fourier map
Least-squares matrix: full
Hydrogen site location: inferred from neighbouring
sites
R[F
2
> 2σ(F
2
)] = 0.019
H-atom parameters constrained
wR(F
2
) = 0.041
w = 1/[σ
2
(F
o
2
) + (0.015P)
2
+ 1.35P]
where P = (F
o
2
+ 2F
c
2
)/3
S = 1.01
(Δ/σ)
max
= 0.001
4047 reflections
Δρ
max
= 0.97 e Å
−3
163 parameters
Δρ
min
= −1.15 e Å
−3
Primary atom site location: structure-invariant direct
methods
Extinction correction: none
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance mat-
rix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations
between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of
cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F
2
against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F
2
, convention-
al R-factors R are based on F, with F set to zero for negative F
2
. The threshold expression of F
2
> σ(F
2
) is used only for calculating R-
supplementary materials
sup-3
factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F
2
are statistically about twice as large
as those based on F, and R- factors based on ALL data will be even larger.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
2
)
x y z
U
iso
*/U
eq
Hg1 0.170956 (13) 0.446982 (7) 0.108289 (9) 0.02080 (3)
Br1 0.86964 (5) 0.10383 (2) −0.01114 (3) 0.04340 (9)
Cl1 0.42148 (9) 0.53787 (4) 0.15929 (7) 0.03126 (16)
Cl2 0.04621 (9) 0.39647 (4) −0.07921 (5) 0.02143 (12)
N1 0.2551 (3) 0.29234 (14) 0.15931 (18) 0.0183 (4)
N2 −0.0272 (3) 0.38863 (15) 0.21855 (18) 0.0192 (4)
C1 −0.0010 (3) 0.30362 (17) 0.2535 (2) 0.0192 (5)
C2 −0.1169 (4) 0.26078 (18) 0.3146 (2) 0.0207 (5)
H2A −0.0974 0.2006 0.3366 0.025*
C3 −0.2618 (4) 0.30668 (18) 0.3433 (2) 0.0219 (5)
H3A −0.3420 0.2788 0.3861 0.026*
C4 −0.2871 (4) 0.39390 (18) 0.3083 (2) 0.0218 (5)
H4A −0.3842 0.4272 0.3275 0.026*
C5 −0.1679 (4) 0.43198 (18) 0.2445 (2) 0.0209 (5)
H5A −0.1878 0.4911 0.2184 0.025*
C6 0.1522 (4) 0.25556 (18) 0.2214 (2) 0.0212 (5)
H6A 0.1752 0.1965 0.2471 0.025*
C7 0.3966 (3) 0.24488 (18) 0.1221 (2) 0.0194 (5)
C8 0.4078 (4) 0.15213 (19) 0.1228 (2) 0.0239 (5)
H8A 0.3193 0.1175 0.1508 0.029*
C9 0.5489 (4) 0.1107 (2) 0.0824 (2) 0.0270 (6)
H9A 0.5572 0.0476 0.0820 0.032*
C10 0.6778 (4) 0.1622 (2) 0.0425 (2) 0.0260 (6)
C11 0.6691 (4) 0.25420 (19) 0.0398 (2) 0.0230 (5)
H11A 0.7587 0.2884 0.0122 0.028*
C12 0.5255 (3) 0.29538 (18) 0.0786 (2) 0.0206 (5)
H12A 0.5151 0.3584 0.0756 0.025*
Atomic displacement parameters (Å
2
)
U
11
U
22
U
33
U
12
U
13
U
23
Hg1 0.02163 (5) 0.01490 (5) 0.02590 (6) −0.00157 (4) 0.00290 (4) 0.00198 (4)
Br1 0.04489 (19) 0.03626 (17) 0.0548 (2) 0.01823 (15) 0.03004 (17) 0.01083 (16)
Cl1 0.0233 (3) 0.0157 (3) 0.0531 (5) −0.0016 (2) −0.0027 (3) −0.0017 (3)
Cl2 0.0274 (3) 0.0159 (3) 0.0210 (3) 0.0040 (2) 0.0029 (2) 0.0000 (2)
N1 0.0210 (10) 0.0147 (10) 0.0187 (10) 0.0018 (8) 0.0009 (8) −0.0002 (8)
N2 0.0221 (10) 0.0163 (10) 0.0194 (10) −0.0008 (8) 0.0028 (8) 0.0005 (8)
C1 0.0227 (12) 0.0171 (12) 0.0179 (12) 0.0002 (9) 0.0025 (10) 0.0003 (9)
C2 0.0278 (13) 0.0152 (12) 0.0189 (12) −0.0014 (10) 0.0027 (10) 0.0027 (9)
C3 0.0248 (13) 0.0226 (13) 0.0188 (12) −0.0017 (10) 0.0043 (10) 0.0028 (10)
C4 0.0234 (12) 0.0201 (12) 0.0221 (13) 0.0042 (10) 0.0034 (10) 0.0019 (10)
C5 0.0256 (13) 0.0170 (12) 0.0203 (12) 0.0028 (10) 0.0030 (10) 0.0031 (10)
supplementary materials
sup-4
C6 0.0271 (13) 0.0162 (12) 0.0202 (12) 0.0018 (10) 0.0030 (10) 0.0014 (10)
C7 0.0201 (11) 0.0202 (12) 0.0175 (12) 0.0025 (10) 0.0004 (9) 0.0005 (10)
C8 0.0281 (13) 0.0203 (13) 0.0244 (13) 0.0015 (11) 0.0071 (11) 0.0030 (11)
C9 0.0365 (15) 0.0199 (13) 0.0258 (14) 0.0089 (11) 0.0086 (12) 0.0027 (11)
C10 0.0283 (13) 0.0273 (14) 0.0236 (13) 0.0088 (11) 0.0077 (11) 0.0036 (11)
C11 0.0231 (12) 0.0252 (13) 0.0209 (12) 0.0008 (11) 0.0038 (10) 0.0014 (11)
C12 0.0225 (12) 0.0204 (12) 0.0187 (12) 0.0003 (10) 0.0017 (10) 0.0011 (10)
Geometric parameters (Å, °)
Hg1—N2 2.318 (2) C3—H3A 0.9500
Hg1—Cl1 2.3799 (7) C4—C5 1.392 (4)
Hg1—N1 2.472 (2) C4—H4A 0.9500
Hg1—Cl2 2.4941 (7) C5—H5A 0.9500
Hg1—Cl2
i
2.8799 (6) C6—H6A 0.9500
Br1—C10 1.894 (3) C7—C8 1.396 (4)
Cl2—Hg1
i
2.8799 (6) C7—C12 1.399 (4)
N1—C6 1.282 (3) C8—C9 1.389 (4)
N1—C7 1.418 (3) C8—H8A 0.9500
N2—C5 1.330 (3) C9—C10 1.388 (4)
N2—C1 1.354 (3) C9—H9A 0.9500
C1—C2 1.384 (4) C10—C11 1.385 (4)
C1—C6 1.471 (4) C11—C12 1.394 (4)
C2—C3 1.387 (4) C11—H11A 0.9500
C2—H2A 0.9500 C12—H12A 0.9500
C3—C4 1.385 (4)
N2—Hg1—Cl1 129.00 (6) C3—C4—H4A 120.5
N2—Hg1—N1 70.58 (7) C5—C4—H4A 120.5
Cl1—Hg1—N1 107.12 (5) N2—C5—C4 122.4 (2)
N2—Hg1—Cl2 102.20 (6) N2—C5—H5A 118.8
Cl1—Hg1—Cl2 128.74 (3) C4—C5—H5A 118.8
N1—Hg1—Cl2 90.35 (5) N1—C6—C1 120.8 (2)
N2—Hg1—Cl2
i
88.36 (6) N1—C6—H6A 119.6
Cl1—Hg1—Cl2
i
90.07 (2) C1—C6—H6A 119.6
N1—Hg1—Cl2
i
158.28 (5) C8—C7—C12 119.9 (2)
Cl2—Hg1—Cl2
i
88.926 (19) C8—C7—N1 123.3 (2)
Hg1—Cl2—Hg1
i
91.074 (19) C12—C7—N1 116.8 (2)
C6—N1—C7 121.4 (2) C9—C8—C7 119.7 (3)
C6—N1—Hg1 113.18 (17) C9—C8—H8A 120.2
C7—N1—Hg1 125.39 (17) C7—C8—H8A 120.2
C5—N2—C1 118.8 (2) C10—C9—C8 119.4 (3)
C5—N2—Hg1 123.96 (18) C10—C9—H9A 120.3
C1—N2—Hg1 117.19 (17) C8—C9—H9A 120.3
N2—C1—C2 121.8 (2) C11—C10—C9 122.1 (3)
N2—C1—C6 118.2 (2) C11—C10—Br1 119.4 (2)
C2—C1—C6 119.9 (2) C9—C10—Br1 118.5 (2)
C1—C2—C3 119.3 (2) C10—C11—C12 118.2 (3)
supplementary materials
sup-5
C1—C2—H2A 120.4 C10—C11—H11A 120.9
C3—C2—H2A 120.4 C12—C11—H11A 120.9
C4—C3—C2 118.6 (2) C11—C12—C7 120.7 (3)
C4—C3—H3A 120.7 C11—C12—H12A 119.7
C2—C3—H3A 120.7 C7—C12—H12A 119.7
C3—C4—C5 119.0 (2)
N2—Hg1—Cl2—Hg1
i
88.09 (6) C6—C1—C2—C3 −179.4 (2)
Cl1—Hg1—Cl2—Hg1
i
−89.22 (3) C1—C2—C3—C4 0.9 (4)
N1—Hg1—Cl2—Hg1
i
158.29 (5) C2—C3—C4—C5 0.8 (4)
Cl2
i
—Hg1—Cl2—Hg1
i
0.0 C1—N2—C5—C4 1.5 (4)
N2—Hg1—N1—C6 −0.60 (18) Hg1—N2—C5—C4 178.0 (2)
Cl1—Hg1—N1—C6 125.53 (18) C3—C4—C5—N2 −2.1 (4)
Cl2—Hg1—N1—C6 −103.42 (18) C7—N1—C6—C1 −175.9 (2)
Cl2
i
—Hg1—N1—C6
−15.4 (3) Hg1—N1—C6—C1 1.6 (3)
N2—Hg1—N1—C7 176.8 (2) N2—C1—C6—N1 −2.1 (4)
Cl1—Hg1—N1—C7 −57.1 (2) C2—C1—C6—N1 175.8 (3)
Cl2—Hg1—N1—C7 73.94 (19) C6—N1—C7—C8 18.2 (4)
Cl2
i
—Hg1—N1—C7
161.92 (14) Hg1—N1—C7—C8 −159.0 (2)
Cl1—Hg1—N2—C5 86.3 (2) C6—N1—C7—C12 −164.6 (2)
N1—Hg1—N2—C5 −177.1 (2) Hg1—N1—C7—C12 18.3 (3)
Cl2—Hg1—N2—C5 −91.0 (2) C12—C7—C8—C9 1.3 (4)
Cl2
i
—Hg1—N2—C5
−2.5 (2) N1—C7—C8—C9 178.5 (3)
Cl1—Hg1—N2—C1 −97.14 (19) C7—C8—C9—C10 0.5 (4)
N1—Hg1—N2—C1 −0.46 (18) C8—C9—C10—C11 −1.1 (5)
Cl2—Hg1—N2—C1 85.56 (18) C8—C9—C10—Br1 179.6 (2)
Cl2
i
—Hg1—N2—C1
174.10 (18) C9—C10—C11—C12 0.0 (4)
C5—N2—C1—C2 0.4 (4) Br1—C10—C11—C12 179.3 (2)
Hg1—N2—C1—C2 −176.4 (2) C10—C11—C12—C7 1.8 (4)
C5—N2—C1—C6 178.2 (2) C8—C7—C12—C11 −2.5 (4)
Hg1—N2—C1—C6 1.4 (3) N1—C7—C12—C11 −179.8 (2)
N2—C1—C2—C3 −1.6 (4)
Symmetry codes: (i) −x, −y+1, −z.
supplementary materials
sup-6
Fig. 1

Recommended publications

Discover more