Correction: A Novel Bayesian DNA Motif Comparison Method for Clustering and Retrieval

PLoS Computational Biology (Impact Factor: 4.62). 05/2011; 7(5). DOI: 10.1371/annotation/d876137b-59c5-48cf-8491-c8cf12f26a9b
Source: PubMed


[This corrects the article on p. e1000010 in vol. 4.].

Download full-text


Available from: Naomi Habib, Jan 02, 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.
    Preview · Article · Feb 2008 · Genome informatics. International Conference on Genome Informatics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional responses often consist of regulatory modules - sets of genes with a shared expression pattern that are controlled by the same regulatory mechanisms. Previous methods allow dissecting regulatory modules from genomics data, such as expression profiles, protein-DNA binding, and promoter sequences. In cases where physical protein-DNA data are lacking, such methods are essential for the analysis of the underlying regulatory program. Here, we present a novel approach for the analysis of modular regulatory programs. Our method - Biochemical Regulatory Network Inference (BRNI) - is based on an algorithm that learns from expression data a biochemically-motivated regulatory program. It describes the expression profiles of gene modules consisting of hundreds of genes using a small number of regulators and affinity parameters. We developed an ensemble learning algorithm that ensures the robustness of the learned model. We then use the topology of the learned regulatory program to guide the discovery of a library of cis-regulatory motifs, and determined the motif compositions associated with each module.We test our method on the cell cycle regulatory program of the fission yeast. We discovered 16 coherent modules, covering diverse processes from cell division to metabolism and associated them with 18 learned regulatory elements, including both known cell-cycle regulatory elements (MCB, Ace2, PCB, ACCCT box) and novel ones, some of which are associated with G2 modules. We integrate the regulatory relations from the expression- and motif-based models into a single network, highlighting specific topologies that result in distinct dynamics of gene expression in the fission yeast cell cycle. Our approach provides a biologically-driven, principled way for deconstructing a set of genes into meaningful transcriptional modules and identifying their associated cis-regulatory programs. Our analysis sheds light on the architecture and function of the regulatory network controlling the fission yeast cell cycle, and a similar approach can be applied to the regulatory underpinnings of other modular transcriptional responses.
    Full-text · Article · Jun 2009 · BMC Bioinformatics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present CisFinder software, which generates a comprehensive list of motifs enriched in a set of DNA sequences and describes them with position frequency matrices (PFMs). A new algorithm was designed to estimate PFMs directly from counts of n-mer words with and without gaps; then PFMs are extended over gaps and flanking regions and clustered to generate non-redundant sets of motifs. The algorithm successfully identified binding motifs for 12 transcription factors (TFs) in embryonic stem cells based on published chromatin immunoprecipitation sequencing data. Furthermore, CisFinder successfully identified alternative binding motifs of TFs (e.g. POU5F1, ESRRB, and CTCF) and motifs for known and unknown co-factors of genes associated with the pluripotent state of ES cells. CisFinder also showed robust performance in the identification of motifs that were only slightly enriched in a set of DNA sequences.
    Full-text · Article · Oct 2009 · DNA Research
Show more