Chen M, Gutierrez GJ, Ronai ZA.. Ubiquitin-recognition protein Ufd1 couples the endoplasmic reticulum (ER) stress response to cell cycle control. Proc Natl Acad Sci USA 108: 9119-9124

Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 05/2011; 108(22):9119-24. DOI: 10.1073/pnas.1100028108
Source: PubMed


The ubiquitin-recognition protein Ufd1 facilitates clearance of misfolded proteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we report that prolonged ER stress represses Ufd1 expression to trigger cell cycle delay, which contributes to ERAD. Remarkably, down-regulation of Ufd1 enhances ubiquitination and destabilization of Skp2 mediated by the anaphase-promoting complex or cyclosome bound to Cdh1 (APC/C(Cdh1)), resulting in accumulation of the cyclin-dependent kinase inhibitor p27 and a concomitant cell cycle delay during the G1 phase that enables more efficient clearance of misfolded proteins. Mechanistically, nuclear Ufd1 recruits the deubiquitinating enzyme USP13 to counteract APC/C(Cdh1)-mediated ubiquitination of Skp2. Our data identify a coordinated cell cycle response to prolonged ER stress through regulation of the Cdh1-Skp2-p27 axis by Ufd1 and USP13.

Download full-text


Available from: Gustavo J Gutierrez, Jul 24, 2014
  • Source
    • "The ability of the proteasome inhibitor, MG-132, to block TM-dependent downregulation of Plk-1 further supports accelerated protein degradation of APC/CCdh1 substrates following ER stress (Figure 1C, lanes 1–4). The TM-dependent decrease of the cell cycle proteins examined here was selective and not due to a general increase in proteasomal activity, as the protein stability of the cell cycle regulator p27 is prolonged by TM treatment [20]. Taken together, TM-induced protein destabilization of APC/CCdh1 substrates suggests activation of APC/CCdh1 under ER stress conditions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The anaphase-promoting complex or cyclosome (APC/C) is a multi-subunit ubiquitin ligase that regulates exit from mitosis and G1 phase of the cell cycle. Although the regulation and function of APC/C(Cdh1) in the unperturbed cell cycle is well studied, little is known of its role in non-genotoxic stress responses. Here, we demonstrate the role of APC/C(Cdh1) (APC/C activated by Cdh1 protein) in cellular protection from endoplasmic reticulum (ER) stress. Activation of APC/C(Cdh1) under ER stress conditions is evidenced by Cdh1-dependent degradation of its substrates. Importantly, the activity of APC/C(Cdh1) maintains the ER stress checkpoint, as depletion of Cdh1 by RNAi impairs cell cycle arrest and accelerates cell death following ER stress. Our findings identify APC/C(Cdh1) as a regulator of cell cycle checkpoint and cell survival in response to proteotoxic insults.
    Full-text · Article · Apr 2012 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The RING finger E3 ubiquitin ligase Siah2 is implicated in control of diverse cellular biological events, including MAPK signaling and hypoxia. Here we demonstrate that Siah2 is subject to regulation by the deubiquitinating enzyme USP13. Overexpression of USP13 increases Siah2 stability by attenuating its autodegradation. Consequently, the ability of Siah2 to target its substrates prolyl hydroxylase 3 and Spry2 (Sprouty2) for ubiquitin-mediated proteasomal degradation is attenuated. Conversely, inhibition of USP13 expression with corresponding shRNA decreases the stability of both Siah2 and its substrate Spry2. Thus, USP13 limits Siah2 autodegradation and its ubiquitin ligase activity against its target substrates. Strikingly, the effect of USP13 on Siah2 is not mediated by its isopeptidase activity: mutations in its ubiquitin-binding sequences positioned within the ubiquitin-specific processing protease and ubiquitin-binding domains, but not within putative catalytic sites, abolish USP13 binding to and effect on Siah2 autodegradation and targeted ubiquitination. Notably, USP13 expression is attenuated in melanoma cells maintained under hypoxia, thereby relieving Siah2 inhibition and increasing its activity under low oxygen levels. Significantly, on melanoma tissue microarray, high nuclear expression of USP13 coincided with high nuclear expression of Siah2. Overall, this study identifies a new layer of Siah2 regulation mediated by USP13 binding to ubiquitinated Siah2 protein with a concomitant inhibitory effect on its activity under normoxia.
    Preview · Article · Jun 2011 · Journal of Biological Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deubiquitinases (DUBs) have fundamental roles in the ubiquitin system through their ability to specifically deconjugate ubiquitin from targeted proteins. The human genome encodes at least 98 DUBs, which can be grouped into 6 families, reflecting the need for specificity in their function. The activity of these enzymes affects the turnover rate, activation, recycling and localization of multiple proteins, which in turn is essential for cell homeostasis, protein stability and a wide range of signaling pathways. Consistent with this, altered DUB function has been related to several diseases, including cancer. Thus, multiple DUBs have been classified as oncogenes or tumor suppressors because of their regulatory functions on the activity of other proteins involved in tumor development. Therefore, recent studies have focused on pharmacological intervention on DUB activity as a rationale to search for novel anticancer drugs. This strategy may benefit from our current knowledge of the physiological regulatory mechanisms of these enzymes and the fact that growth of several tumors depends on the normal activity of certain DUBs. Further understanding of these processes may provide answers to multiple remaining questions on DUB functions and lead to the development of DUB-targeting strategies to expand the repertoire of molecular therapies against cancer.
    No preview · Article · Sep 2011 · Oncogene
Show more

Similar Publications