ArticlePDF Available

Abstract and Figures

Aluminum is an experimentally demonstrated neurotoxin and the most commonly used vaccine adjuvant. Despite almost 90 years of widespread use of aluminum adjuvants, medical science's understanding about their mechanisms of action is still remarkably poor. There is also a concerning scarcity of data on toxicology and pharmacokinetics of these compounds. In spite of this, the notion that aluminum in vaccines is safe appears to be widely accepted. Experimental research, however, clearly shows that aluminum adjuvants have a potential to induce serious immunological disorders in humans. In particular, aluminum in adjuvant form carries a risk for autoimmunity, long-term brain inflammation and associated neurological complications and may thus have profound and widespread adverse health consequences. In our opinion, the possibility that vaccine benefits may have been overrated and the risk of potential adverse effects underestimated, has not been rigorously evaluated in the medical and scientific community. We hope that the present paper will provide a framework for a much needed and long overdue assessment of this highly contentious medical issue.
Content may be subject to copyright.
A preview of the PDF is not available
... While the likelihood of this event is low, it is an important aspect to consider during vaccine development [75]. To improve immunogenicity, DNA vaccines often require the use of adjuvants, which can increase the immune response but may also introduce additional complexities and potential side effects [76]. Furthermore, the administration of DNA vaccines typically requires a medical device like the use of an electroporator that can deliver electric pulses to facilitate the uptake of DNA by cells [77]. ...
Article
Full-text available
The clinical use of antibiotics has led to the emergence of multidrug-resistant (MDR) bacteria, leading to the current antibiotic resistance crisis. To address this issue, next-generation vaccines are being developed to prevent antimicrobial resistance caused by MDR bacteria. Traditional vaccine platforms, such as inactivated vaccines (IVs) and live attenuated vaccines (LAVs), were effective in preventing bacterial infections. However, they have shown reduced efficacy against emerging antibiotic-resistant bacteria, including MDR M. tuberculosis. Additionally, the large-scale production of LAVs and IVs requires the growth of live pathogenic microorganisms. A more promising approach for the accelerated development of vaccines against antibiotic-resistant bacteria involves the use of in silico immunoinformatics techniques and reverse vaccinology. The bioinformatics approach can identify highly conserved antigenic targets capable of providing broader protection against emerging drug-resistant bacteria. Multi-epitope vaccines, such as recombinant protein-, DNA-, or mRNA-based vaccines, which incorporate several antigenic targets, offer the potential for accelerated development timelines. This review evaluates the potential of next-generation vaccine development based on the reverse vaccinology approach and highlights the development of safe and immunogenic vaccines through relevant examples from successful preclinical and clinical studies.
... Along with increasing the efficacy in eliciting the differentiation of CD 4+ T helper cell (Th2) and antibody responses in humans, alum is a prevalent adjuvant primarily due to its availability and its low-cost manufacturing. 29, 30 The adjuvant effect of alum is TLRindependent, although adjuvant activated TLR-mediated innate immunity enhances the immunogenicity of a vaccine. 31 Alum reportedly stimulated adaptive immunity by causing cell death at the site of injection, thereby activating the inflammatory DCs to release cytokines and chemokines. ...
Article
Full-text available
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
... Additional studies have shown that most of the aluminum is rapidly cleared by the kidneys after vaccination [93]. However, infants, the elderly and those with impaired kidney function are prone to accumulation of aluminum in their bodies [94]. After entering the human body, aluminum-containing adjuvants first deposit in the brain, producing neurotoxic effects [95], which are manifested in memory loss, inattention, language dysfunction and behavior changes, and can also be manifested in psychomotor disorder, repetitive behavior, language disorder, sleep disorder, seizure, anxiety and inattention, learning and memory defects. ...
Article
Full-text available
Although hundreds of different adjuvants have been tried, aluminum-containing adjuvants are by far the most widely used currently. It is worth mentioning that although aluminum-containing adjuvants have been commonly applied in vaccine production, their acting mechanism remains not completely clear. Thus far, researchers have proposed the following mechanisms: (1) depot effect, (2) phagocytosis, (3) activation of pro-inflammatory signaling pathway NLRP3, (4) host cell DNA release, and other mechanisms of action. Having an overview on recent studies to increase our comprehension on the mechanisms by which aluminum-containing adjuvants adsorb antigens and the effects of adsorption on antigen stability and immune response has become a mainstream research trend. Aluminum-containing adjuvants can enhance immune response through a variety of molecular pathways, but there are still significant challenges in designing effective immune-stimulating vaccine delivery systems with aluminum-containing adjuvants. At present, studies on the acting mechanism of aluminum-containing adjuvants mainly focus on aluminum hydroxide adjuvants. This review will take aluminum phosphate as a representative to discuss the immune stimulation mechanism of aluminum phosphate adjuvants and the differences between aluminum phosphate adjuvants and aluminum hydroxide adjuvants, as well as the research progress on the improvement of aluminum phosphate adjuvants (including the improvement of the adjuvant formula, nano-aluminum phosphate adjuvants and a first-grade composite adjuvant containing aluminum phosphate). Based on such related knowledge, determining optimal formulation to develop effective and safe aluminium-containing adjuvants for different vaccines will become more substantiated.
... An oil-in-water emulsion adjuvant enhances the efficacy of influenza vaccines in children. However, aluminum salt-based vaccine adjuvants can cause side effects [96][97][98]. Aluminum salt-based vaccine adjuvants can have serious and widespread adverse effects on health, as they carry the risk of autoimmunity, long-term brain inflammation, neurological deficits similar to those in Alzheimer's disease in adults, and autism in children. Therefore, there is a high demand for the development of a safe adjuvant considering the side effects of artificial vaccine adjuvants. ...
Article
Full-text available
Dysbiosis of the gut microbiota with aging contributes to a reduction in important cross-feeding bacterial reactions in the gut and immunosenescence, which could contribute to a decrease in vaccine efficacy. Fever, cough, and fatigue are the main signs of coronavirus disease 2019 (COVID-19); however, some patients with COVID-19 present with gastrointestinal symptoms. COVID-19 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best measures to reduce SARS-CoV-2 infection rates and the severity of COVID-19. The immunogenicity of COVID-19 vaccines is influenced by the composition of the gut microbiota, and the immune response to COVID-19 vaccines decreases with age. In this review, we discuss gut microbiota dysbiosis and immunosenescence in the older adults, the role of gut microbiota in improving the efficacy of COVID-19 vaccines, and dietary interventions to improve the efficacy of COVID-19 vaccines in the older adults.
... Introduced in 1926, Aluminum-based adjuvants were the first to receive approval for clinical use in humans and, whilst they have been very useful re inducing a strong humoral response, they have not been shown to be as good at eliciting a cellular immune response (along with adverse effects at the inoculation site), limiting their application (Oleszycka et al., 2018;Tomljenovic and A. Shaw, 2011). ...
Article
Adjuvants represent one of the most significant biotechnological solutions regarding vaccine development, thereby broadening the amount of candidates which can now be used and tested in vaccine formulations targeting various pathogens, as antigens which were previously discarded due to their low or null immunogenicity can now be included. Adjuvant development research has grown side-by-side with an increasing body of knowledge regarding immune systems and their recognition of foreign microorganisms. Alum-derived adjuvants were used in human vaccines for many years, even though complete understanding of their vaccination-related mechanism of action was lacking. The amount of adjuvants approved for human use has increased recently in line with attempts to interact with and stimulate the immune system. This review is aimed at summarising what is known about adjuvants, focusing on those approved for use in humans, their mechanism of action and why they are so necessary for vaccine candidate formulations; it also discusses what the future may hold in this growing research field.
... They found that the IL-2/Alum combination resulted in a more beneficial immune response compared to the IL-2/GM-CSF [117]. However, adverse and toxic side effects have been reported with the use of aluminum adjuvants [113,118,119]. ...
Article
Full-text available
Cancer of the skin is by far the most common of all cancers. Although the incidence of melanoma is relatively low among skin cancers, it can account for a high number of skin cancer deaths. Since the start of deeper insight into the mechanisms of melanoma tumorigenesis and their strong interaction with the immune system, the development of new therapeutical strategies has been continuously rising. The high number of melanoma cell mutations provides a diverse set of antigens that the immune system can recognize and use to distinguish tumor cells from normal cells. Peptide-based synthetic anti-tumor vaccines are based on tumor antigens that elicit an immune response due to antigen-presenting cells (APCs). Although targeting APCs with peptide antigens is the most important assumption for vaccine development, peptide antigens alone are poorly immunogenic. The immunogenicity of peptide antigens can be improved not only by synthetic modifications but also by the assistance of adjuvants and/or delivery systems. The current review summarizes the different chemical approaches for the development of effective peptide-based vaccines for the immunotherapeutic treatment of advanced melanoma.
Article
Background: The use of nanodiamonds (NDs) and fluorescent nanodiamonds (FNDs) as nonallergenic biocompatible additives in incomplete Freund's adjuvant (IFA) to elicit immune responses in vivo was investigated. Methods: C57BL/6 mice were immunized with chicken egg ovalbumin (OVA) in IFA and also OVA-conjugated NDs (or OVA-conjugated FNDs) in IFA to produce antibodies. OVA-expressing E.G7 lymphoma cells and OVA-negative EL4 cells were inoculated in mice to induce tumor formation. Results: The new formulation significantly enhanced immune responses and thus disease resistance. It exhibited specific therapeutic activities, effectively inhibiting the growth of E.G7 tumor cells in mice over 35 days. Conclusion: The high biocompatibility and multiple functionalities of NDs/FNDs render them applicable as active and trackable vaccine adjuvants and antitumor agents.
Article
Introduction: The escalating global changes have fostered conditions for the expansion and transmission of diverse biological factors, leading to the rise of emerging and reemerging infectious diseases. Complex viral infections, such as COVID-19, influenza, HIV, and Ebola, continue to surface, necessitating the development of effective vaccine technologies. Areas covered: This review article highlights recent advancements in molecular biology, virology, and genomics that have propelled the design and development of innovative molecular tools. These tools have promoted new vaccine research platforms and directly improved vaccine efficacy. The review summarizes the cutting-edge molecular engineering tools used in creating novel vaccines and explores the rapidly expanding molecular tools landscape and potential directions for future vaccine development. Expert opinion: The strategic application of advanced molecular engineering tools can address conventional vaccine limitations, enhance the overall efficacy of vaccine products, promote diversification in vaccine platforms, and form the foundation for future vaccine development. Prioritizing safety considerations of these novel molecular tools during vaccine development is crucial.
Article
Nanovaccines have shown to be effective, and this is the reason they are preferred than conventional vaccines. The scope of this review is to describe the role, mechanisms, and advantages of nano vaccines based on lipids, and present the most important types, their physicochemical characteristics, as well as their challenges. The most important categories of lipid nano-vaccines are liposomal nano vaccines and (virus-lipid nanoparticles (NPs)/virosomes. Examples of vaccine formulations from each category are presented and analyzed below, focusing on their structure and physicochemical characteristics. In all cases, a nanoscale platform is used, enriched with adjuvants, antigens, and other helping agents to trigger immune response process and achieve cell targeting, and eventually immunity against the desired disease. The exact mechanism of action of each vaccine is not always completely known or understood. Physicochemical characteristics, such as particle size, morphology/shape, and zeta potential are also mentioned as they seem to affect the properties and mechanism of action of the vaccine formulation.
Article
Macrophagic myofasciitis is a condition first reported in 1998, which cause remained obscure until 2001. Over 200 definite cases have been identified in France, and isolated cases have been recorded in other countries. The condition manifests by diffuse myalgias and chronic fatigue, forming a syndrome that meets both Center for Disease Control and Oxford criteria for the so-called chronic fatigue syndrome in about half of patients. One third of patients develop an autoimmune disease, such as multiple sclerosis. Even in the absence of overt autoimmune disease they commonly show subtle signs of chronic immune stimulation, and most of them are of the HLADRB1'01 group, a phenotype at risk to develop polymyalgia rheumatica and rheumatoid arthritis. Macrophagic myofasciitis is characterized by a stereotyped and immunologically active lesion at deltoid muscle biopsy. Electron microscopy, microanalytical studies, experimental procedures, and an epidemiological study recently demonstrated that the lesion is due to persistence for years at site of injection of an aluminum adjuvant used in vaccines against hepatitis 8 virus, hepatitis A virus, and tetanus toxoid. Aluminum hydroxide is known to potently stimulate the immune system and to shift immune responses towards a Th-2 profile. It is plausible that persistent systemic immune activation that fails to switch off represents the pathophysiologic basis of chronic fatigue syndrome associated with macrophagic myofasciitis, similarly to what happens in patients with post-infectious chronic fatigue and possibly idiopathic chronic fatigue syndrome. Therefore, the WHO recommended an epidemiological survey, currently conducted by the French agency AFSSAPS, aimed at substantiating the possible link between the focal macrophagic myofasciitis lesion (or previous immunization with aluminium-containing vaccines) and systemic symptoms. Interestingly, special emphasis has been put on Th-2 biased immune responses as a possible explanation of chronic fatigue and associated manifestations known as the Gulf war syndrome. Results concerning macrophagic myofasciitis may well open new avenues for etiologic investigation of this syndrome. Indeed, both type and structure of symptoms are strikingly similar in Gulf war veterans and patients with macrophagic myofasciitis. Multiple vaccinations performed over a short period of time in the Persian gulf area have been recognized as the main risk factor for Gulf War syndrome. Moreover, the war vaccine against anthrax, which is administered in a 6-shot regimen and seems to be crucially involved, is adjuvanted by aluminium hydroxide and, possibly, squalene, another Th-2 adjuvant. If safety concerns about long-term effects of aluminium hydroxide are confirmed it will become mandatory to propose novel and alternative vaccine adjuvants to rescue vaccine-based strategies and the enormous benefit for public health they provide worlwide.
Article
Recent evidence indicates that fluoride produces neuronal destruction and synaptic injury by a mechanism that involves free radical production and lipid peroxidation. For a number of pathological disorders of the central nervous system (CNS), excitotoxicity plays a critical role. Various studies have shown that many of the neurotoxic metals, such as mercury, lead, aluminum, and iron also injure neural elements in the CNS by an excitotoxic mechanism. Free radical generation and lipid peroxidation, especially in the face of hypomagnesemia and low neuronal energy production, also magnify excitotoxic sensitivity of neurons and their elements. This paper reviews briefly some of the studies that point to a common mechanism for the CNS neurotoxic effects of fluoride and calls for research directed toward further elucidation of this mechanism.
Article
I. INTRODUCTION During a period of about seven years I have occasionally conducted experiments on the effects of aluminum salts. These studies have convinced me that the use in food of alum or any other aluminum compound is a dangerous practice. That the aluminum ion is very toxic is well known. That"aluminized" food yields soluble aluminum compounds to gastric juice (and stomach contents) has been demonstrated. That such soluble aluminum is in part absorbed and carried to all parts of the body by the blood can no longer be doubted. That the organism can "tolerate" such treatment without suffering harmful consequences has not been shown. It is believed that the facts in this paper will give emphasis to my conviction that aluminum should be excluded from food.1II. EXPERIMENTS BY HOUSE AND GIES ON THE EFFECTS OF ALUMINUM COMPOUNDS ON THE GROWTH OF SEEDLINGS Several years ago, in collaboration
Chapter
Aluminum has been repeatedly implicated in the etiopathology of several human neurodegenerative disorders including Alzheimer's disease. Due largely to the extensive euchromatization of normal brain cell neuronal nuclei and their high intrinsic rate of transcription, one prime target for aluminum appears to be within the nucleic acid compartments of the central nervous system. Generally, the high positive charge density of aluminum (Z2/r = 17.65) acts as a pervasive repressor and demodulator of neural activity. This chapter will review our current knowledge concerning aluminum as a genotoxic 'dementing' cation, particularly as it applies to neural-specific gene transcription and transcription factors in the human brain.
Article
Macrophagic myofasciitis (MMF), a condition newly recognized in France, is manifested by diffuse myalgias and characterized by highly specific myopathological alterations which have recently been shown to represent an unusually persistent local reaction to intramuscular injections of aluminium-containing vaccines. Among 92 MMF patients recognized so far, eight of them, which included the seven patients reported here, had a symptomatic demyelinating CNS disorder. CNS manifestations included hemisensory or sensorimotor symptoms (four out of seven), bilateral pyramidal signs (six out of seven), cerebellar signs (four out of seven), visual loss (two out of seven), cognitive and behavioural disorders (one out of seven) and bladder dysfunction (one out of seven). Brain T2-weighted MRI showed single (two out of seven) or multiple (four out of seven) supratentorial white matter hyperintense signals and corpus callosum atrophy (one out of seven). Evoked potentials were abnormal in four out of six patients and CSF in four out of seven. According to Poser's criteria for multiple sclerosis, the diagnosis was clinically definite (five out of seven) or clinically probable multiple sclerosis (two out of seven). Six out of seven patients had diffuse myalgias. Deltoid muscle biopsy showed stereotypical accumulations of PAS (periodic acid–Schiff)-positive macrophages, sparse CD8+ T cells and minimal myofibre damage. Aluminium-containing vaccines had been administered 3–78 months (median = 33 months) before muscle biopsy (hepatitis B virus: four out of seven, tetanus toxoid: one out of seven, both hepatitis B virus and tetanus toxoid: two out of seven). The association between MMF and multiple sclerosis-like disorders may give new insights into the controversial issues surrounding vaccinations and demyelinating CNS disorders. Deltoid muscle biopsy searching for myopathological alterations of MMF should be performed in multiple sclerosis patients with diffuse myalgias.