A computational framework for the inheritance of genomic imprinting for complex traits

Office of Surveillance and Biometrics, Center for Devices and Radiological Health, Food and Drug Administration, USA.
Briefings in Bioinformatics (Impact Factor: 9.62). 05/2011; 13(1):34-45. DOI: 10.1093/bib/bbr023
Source: PubMed


Genetic imprinting, by which the expression of a gene depends on the parental origin of its alleles, may be subjected to reprogramming through each generation. Currently, such reprogramming is limited to qualitative description only, lacking more precise quantitative estimation for its extent, pattern and mechanism. Here, we present a computational framework for analyzing the magnitude of genetic imprinting and its transgenerational inheritance mode. This quantitative model is based on the breeding scheme of reciprocal backcrosses between reciprocal F(1) hybrids and original inbred parents, in which the transmission of genetic imprinting across generations can be tracked. We define a series of quantitative genetic parameters that describe the extent and transmission mode of genetic imprinting and further estimate and test these parameters within a genetic mapping framework using a new powerful computational algorithm. The model and algorithm described will enable geneticists to identify and map imprinted quantitative trait loci and dictate a comprehensive atlas of developmental and epigenetic mechanisms related to genetic imprinting. We illustrate the new discovery of the role of genetic imprinting in regulating hyperoxic acute lung injury survival time using a mouse reciprocal backcross design.

Download full-text


Available from: Rongling Wu, Jun 07, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The identification of imprinted genes is becoming a standard procedure in searching for quantitative trait loci (QTL) underlying complex traits. When a developmental characteristic such as growth or drug response is observed at multiple time points, understanding the dynamics of gene function governing the underlying feature should provide more biological information regarding the genetic control of an organism. Recognizing that differential imprinting can be development-specific, mapping imprinted genes considering the dynamic imprinting effect can provide additional biological insights into the epigenetic control of a complex trait. In this study, we proposed a Bayesian imprinted QTL (iQTL) mapping framework considering the dynamics of imprinting effects and model multiple iQTLs with an efficient Bayesian model selection procedure. The method overcomes the limitation of likelihood-based mapping procedure, and can simultaneously identify multiple iQTLs with different gene action modes across the whole genome with high computational efficiency. An inference procedure using Bayes factors to distinguish different imprinting patterns of iQTL was proposed. Monte Carlo simulations were conducted to evaluate the performance of the method. The utility of the approach was illustrated through an analysis of a body weight growth data set in an F(2) family derived from LG/J and SM/J mouse stains. The proposed Bayesian mapping method provides an efficient and computationally feasible framework for genome-wide multiple iQTL inference with complex developmental traits.
    Full-text · Article · Feb 2012 · Briefings in Bioinformatics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formation of phenotypic traits, such as biomass production, tumor volume and viral abundance, undergoes a complex process in which interactions between genes and developmental stimuli take place at each level of biological organization from cells to organisms. Traditional studies emphasize the impact of genes by directly linking DNA-based markers with static phenotypic values. Functional mapping, derived to detect genes that control developmental processes using growth equations, has proven powerful for addressing questions about the roles of genes in development. By treating phenotypic formation as a cohesive system using differential equations, a different approach-systems mapping-dissects the system into interconnected elements and then map genes that determine a web of interactions among these elements, facilitating our understanding of the genetic machineries for phenotypic development. Here, we argue that genetic mapping can play a more important role in studying the genotype-phenotype relationship by filling the gaps in the biochemical and regulatory process from DNA to end-point phenotype. We describe a new framework, named network mapping, to study the genetic architecture of complex traits by integrating the regulatory networks that cause a high-order phenotype. Network mapping makes use of a system of differential equations to quantify the rule by which transcriptional, proteomic and metabolomic components interact with each other to organize into a functional whole. The synthesis of functional mapping, systems mapping and network mapping provides a novel avenue to decipher a comprehensive picture of the genetic landscape of complex phenotypes that underlie economically and biomedically important traits.
    No preview · Article · Aug 2012 · Briefings in Bioinformatics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditional approaches for genetic mapping are to simply associate the genotypes of a quantitative trait locus (QTL) with the phenotypic variation of a complex trait. A more mechanistic strategy has emerged to dissect the trait phenotype into its structural components and map specific QTLs that control the mechanistic and structural formation of a complex trait. We describe and assess such a strategy, called structural mapping, by integrating the internal structural basis of trait formation into a QTL mapping framework. Electrical impedance spectroscopy (EIS) has been instrumental for describing the structural components of a phenotypic trait and their interactions. By building robust mathematical models on circuit EIS data and embedding these models within a mixture model-based likelihood for QTL mapping, structural mapping implements the EM algorithm to obtain maximum likelihood estimates of QTL genotype-specific EIS parameters. The uniqueness of structural mapping is to make it possible to test a number of hypotheses about the pattern of the genetic control of structural components. We validated structural mapping by analyzing an EIS data collected for QTL mapping of frost hardiness in a controlled cross of jujube trees. The statistical properties of parameter estimates were examined by simulation studies. Structural mapping can be a powerful alternative for genetic mapping of complex traits by taking account into the biological and physical mechanisms underlying their formation.
    Full-text · Article · Oct 2012 · Briefings in Bioinformatics
Show more