Morphogen gradient formation and action Insights from studying Bicoid protein degradation

Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
Fly (Impact Factor: 3.33). 07/2011; 5(3):242-6. DOI: 10.4161/fly.5.3.15837
Source: PubMed


In a recent publication, we identified a novel F-box protein, encoded by fates-shifted (fsd), that plays a role in targeting Bcd for ubiquitination and degradation. Our analysis of mutant Drosophila embryos suggests that Bcd protein degradation is important for proper gradient formation and developmental fate specification. Here we describe further experiments that lead to an estimate of Bcd half-life, < 15 min, in embryos during the time of gradient formation. We use our findings to evaluate different models of Bcd gradient formation. With this new estimate, we simulate the Bcd gradient formation process in our own biologically realistic 2-D model. Finally, we discuss the role of Bcd-encoded positional information in controlling the positioning and precision of developmental decisions.

Download full-text


Available from: Jun Ma, Jul 07, 2014
  • Source
    • "In addition, this boundary does not significantly change upon mutating Kr or kni individually [13], [14], [41]. These findings suggest that the Bcd input plays a key role in determining the properties of hb expression boundary [28]. On the other hand, simultaneous loss of both Kr and kni can significantly alter hb expression [10], [13], [41], [42], indicating a role of cross-regulatory mechanisms in controlling hb expression. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anterior-posterior (AP) patterning in the Drosophila embryo is dependent on the Bicoid (Bcd) morphogen gradient. However, most target genes of Bcd also require additional inputs to establish their expression domains, reflective of the operation of a cross-regulatory network and contributions of other maternal signals. This is in contrast to hunchback (hb), which has an anterior expression domain driven by an enhancer that appears to respond primarily to the Bcd input. To gain a better understanding of the regulatory logic of the AP patterning network, we perform quantitative studies that specifically investigate the dynamics of hb transcription during development. We show that Bcd-dependent hb transcription, monitored by the intron-containing nascent transcripts near the P2 promoter, is turned off quickly-on the order of a few minutes-upon entering the interphase of nuclear cycle 14A. This shutdown contrasts with earlier cycles during which active hb transcription can persist until the moment when the nucleus enters mitosis. The shutdown takes place at a time when the nuclear Bcd gradient profile in the embryo remains largely intact, suggesting that this is a process likely subject to control of a currently unknown regulatory mechanism. We suggest that this dynamic feature offers a window of opportunity for hb to faithfully interpret, and directly benefit from, Bcd gradient properties, including its scaling properties, to help craft a robust AP patterning outcome.
    Full-text · Article · Apr 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important feature of development is the formation of patterns that are proportional to the overall size of the embryo. But how such proportionality, or scaling, is achieved mechanistically remains poorly understood. Furthermore, it is currently unclear whether organisms utilize similar or distinct mechanisms to achieve scaling within a species and between species. Here we investigate within-species scaling mechanisms for anterior-posterior (A-P) patterning in Drosophila melanogaster, focusing specifically on the properties of the Bicoid (Bcd) morphogen gradient. Using embryos from lines artificially selected for large and small egg volume, we show that large embryos have higher nuclear Bcd concentrations in the anterior than small embryos. This anterior difference leads to scaling properties of the Bcd gradient profiles: in broad regions of the large and small embryos along the A-P axis, normalizing their positions to embryo length reduces the differences in both the nuclear Bcd concentrations and Bcd-encoded positional information. We further trace the origin of Bcd gradient scaling by showing directly that large embryos have more maternally deposited bcd mRNA than small embryos. Our results suggest a simple model for how within-species Bcd gradient scaling can be achieved. In this model, the Bcd production rate, which is dependent on the total number of bcd mRNA molecules in the anterior, is scaled with embryo volume.
    Full-text · Article · Jul 2011 · Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transcriptional activators are required to turn on the expression of genes in a eukaryotic cell. Activators bound to the enhancer can facilitate either the recruitment of RNA polymerase II to the promoter or its elongation. This article examines a few selected issues in understanding activator functions and activation mechanisms.
    Full-text · Article · Nov 2011 · Protein & Cell
Show more