King-Denborough syndrome with and without mutations in the skeletal muscle ryanodine receptor (RYR1) gene

Division of Pediatric Neurology, Pediatric Neuromuscular Clinic, 5328 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, USA.
Neuromuscular Disorders (Impact Factor: 2.64). 06/2011; 21(6):420-7. DOI: 10.1016/j.nmd.2011.03.006
Source: PubMed


King-Denborough syndrome (KDS), first described in 1973, is a rare condition characterised by the triad of dysmorphic features, myopathy, and malignant hyperthermia susceptibility (MHS). Autosomal dominant inheritance with variable expressivity has been reported in several cases. Mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been implicated in a wide range of myopathies such as central core disease (CCD), the malignant hyperthermia (MH) susceptibility trait and one isolated patient with KDS. Here we report clinical, pathologic and genetic features of four unrelated patients with KDS. Patients had a relatively uniform clinical presentation but muscle biopsy findings were highly variable. Heterozygous missense mutations in RYR1 were uncovered in three out of four families, of which one mutation was novel and two have previously been reported in MH. Further RyR1 protein expression studies performed in two families showed marked reduction of the RyR1 protein, indicating the presence of allelic RYR1 mutations not detectable on routine sequencing and potentially explaining marked intrafamilial variability. Our findings support the hypothesis that RYR1 mutations are associated with King-Denborough syndrome but that further genetic heterogeneity is likely.

18 Reads
  • Source
    • "The genetic basis of this disorder is not entirely clear; MH is one of the characteristic features of the syndrome. De novo dominant mutations and recessive mutations in the RYR1 gene have been reported in some but not all patients[D'Arcy et al., 2008;Dowling et al., 2011], therefore suggesting further genetic heterogeneity. Comparing the overall severity between patients with recessive and dominant inheritance in both groups, there is marked variability . "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ryanodine receptor 1 (RYR1) mutations are a common cause of congenital myopathies associated with both dominant and recessive inheritance. Histopathological findings frequently feature central cores or multi-minicores, more rarely, type 1 predominance/uniformity, fiber-type disproportion, increased internal nucleation, and fatty and connective tissue. We describe 71 families, 35 associated with dominant RYR1 mutations and 36 with recessive inheritance. Five of the dominant mutations and 35 of the 55 recessive mutations have not been previously reported. Dominant mutations, typically missense, were frequently located in recognized mutational hotspot regions, while recessive mutations were distributed throughout the entire coding sequence. Recessive mutations included nonsense and splice mutations expected to result in reduced RyR1 protein. There was wide clinical variability. As a group, dominant mutations were associated with milder phenotypes; patients with recessive inheritance had earlier onset, more weakness, and functional limitations. Extraocular and bulbar muscle involvement was almost exclusively observed in the recessive group. In conclusion, our study reports a large number of novel RYR1 mutations and indicates that recessive variants are at least as frequent as the dominant ones. Assigning pathogenicity to novel mutations is often difficult, and interpretation of genetic results in the context of clinical, histological, and muscle magnetic resonance imaging findings is essential.
    Full-text · Article · Aug 2012 · Human Mutation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic screens for behavioral and physiological defects in Drosophila melanogaster, helped identify several components of calcium signaling of which some, like the Trps, were novel. For genes initially identified in vertebrates, reverse genetic methods have allowed functional studies at the cellular and systemic levels. The aim of this review is to explain how various genetic methods available in Drosophila have been used to place different arms of Ca2+ signaling in the context of organismal development, physiology and behavior. MAJOR CONCLUSION: Mutants generated in genes encoding a range of Ca2+ transport systems, binding proteins and enzymes affect multiple aspects of neuronal and muscle physiology. Some also affect the maintenance of ionic balance and excretion from malpighian tubules and innate immune responses in macrophages. Aspects of neuronal physiology affected include synaptic growth and plasticity, sensory transduction, flight circuit development and function. Genetic interaction screens have shown that mechanisms of maintaining Ca2+ homeostasis in Drosophila are cell specific and require a synergistic interplay between different intracellular and plasma membrane Ca2+ signaling molecules. Insights gained through genetic studies of conserved Ca2+ signaling pathways have helped understand multiple aspects of fly physiology. The similarities between mutant phenotypes of Ca2+ signaling genes in Drosophila with certain human disease conditions, especially where homologous genes are causative factors, are likely to aid in the discovery of underlying disease mechanisms and help develop novel therapeutic strategies. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
    Full-text · Article · Nov 2011 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: The core myopathies, Central Core Disease and Multiminicore Disease, are heterogeneous congenital myopathies with the common defining histopathological feature of focally reduced oxidative enzyme activity (central cores, multiminicores). Mutations in the gene encoding for the skeletal muscle ryanodine (RyR1) receptor are the most common cause. Mutations in the selenoprotein N (SEPN1) gene cause a less common variant. Pathogenic mechanisms underlying dominant RYR1 mutations have been extensively characterized, whereas those associated with recessive RYR1 and SEPN1 mutations are emerging. Identifying a specific genetic defect from the histopathological diagnosis of a core myopathy is complex and ought to be informed by a combined appraisal of histopathological, clinical, and, increasingly, muscle magnetic resonance imaging data. The present review aims at giving an overview of the main genetic and clinicopathological findings, with a major emphasis on features likely to inform the diagnostic process, as well as current treatments and perspectives for future research.
    No preview · Article · Dec 2011 · Seminars in pediatric neurology
Show more