From proteomic multimarker profiling to interesting proteins: Thymosin-β 4 and kininogen-1 as new potential biomarkers for inflammatory hepatic lesions

Institute of Pathology, RWTH University Hospital Aachen, Aachen, Germany.
Journal of Cellular and Molecular Medicine (Impact Factor: 4.01). 10/2010; 15(10):2176-88. DOI: 10.1111/j.1582-4934.2010.01204.x
Source: PubMed


Despite tremendous efforts in disclosing the pathophysiological and epidemiological factors associated with liver fibrogenesis, non-invasive diagnostic measures to estimate the clinical outcome and progression of liver fibrogenesis are presently limited. Therefore, there is a mandatory need for methodologies allowing the reasonable and reliable assessment of the severity and/or progression of hepatic fibrogenesis. We here performed proteomic serum profiling by matrix-assisted laser desorption ionization time-of-flight mass spectrometry in 179 samples of patients chronically infected with hepatitis C virus and 195 control sera. Multidimensional analysis of spectra allowed the definition of algorithms capable to distinguish class-specific protein expression profiles in serum samples. Overall about 100 peaks could be detected per single spectrum. Different algorithms including protein peaks in the range of 2000 and 10,000 Da were generated after pre-fractionation on a weak cation exchange surface. A specificity of 93% with a sensitivity of 86% as mean of the test set results was found, respectively. The nature of three of these protein peaks that belonged to kininogen-1 and thymosin-β(4) was further analysed by tandem mass spectrometry (MS)/MS. We further found that kininogen-1 mRNA was significantly down-regulated in cirrhotic livers. We have identified kininogen-1 and thymosin-β(4) as potential new biomarkers for human chronic hepatitis C and conclude that serum profiling is a reliable technique to identify hepatitis-associated expression patterns. Based on the high throughput capability, the identified differential protein panel may serve as a diagnostic marker and warrants further validation in larger cohorts.

Download full-text


Available from: Mark Reid Groseclose, Nov 18, 2015
  • Source
    • "Although MR elastography can analyze almost the entire liver, it is too expensive and time consuming to use in routine practice [8]. In recent years, serum-based tests of liver cirrhosis have attracted more attention, such as the aspartate to platelet ratio index [13] and the FibroTest [8, 14–18]. However, most of these studies on "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic infection with hepatitis B virus (HBV) is associated with the majority of cases of liver cirrhosis (LC) in China. Although liver biopsy is the reference method for evaluation of cirrhosis, it is an invasive procedure with inherent risk. The aim of this study is to discover novel noninvasive specific serum biomarkers for the diagnosis of HBV-induced LC. We performed bead fractionation/MALDI-TOF MS analysis on sera from patients with LC. Thirteen feature peaks which had optimal discriminatory performance were obtained by using support-vector-machine-(SVM-) based strategy. Based on the previous results, five supervised machine learning methods were employed to construct classifiers that discriminated proteomic spectra of patients with HBV-induced LC from those of controls. Here, we describe two novel methods for prediction of HBV-induced LC, termed LC-NB and LC-MLP, respectively. We obtained a sensitivity of 90.9%, a specificity of 94.9%, and overall accuracy of 93.8% on an independent test set. Comparisons with the existing methods showed that LC-NB and LC-MLP held better accuracy. Our study suggests that potential serum biomarkers can be determined for discriminating LC and non-LC cohorts by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. These two classifiers could be used for clinical practice in HBV-induced LC assessment.
    Full-text · Article · Feb 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver fibrosis, the main characteristic of chronic liver diseases, is strongly associated with the activation of hepatic stellate cells (HSCs), which are responsible for extracellular matrix production. As such, investigating the effective regulators controlling HSC activation provides important clues for developing therapeutics to inhibit liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is known to be involved in various cellular responses. A growing body of evidence suggests that Tβ4 has a potential role in the pathogenesis of liver fibrosis and that it is especially associated with the activation of HSCs. However, it remains unclear whether Tβ4 promotes or suppresses the activation of HSCs. Herein, we review the potential role of Tβ4 in liver fibrosis by describing the effects of exogenous and endogenous Tβ4, and we discuss the possible signaling pathway regulated by Tβ4. Exogenous Tβ4 reduces liver fibrosis by inhibiting the proliferation and migration of HSCs. Tβ4 is expressed endogenously in the activated HSCs, but this endogenous Tβ4 displays opposite effects in HSC activation, either as an activator or an inhibitor. Although the role of Tβ4 has not been established, it is apparent that Tβ4 influences HSC activation, suggesting that Tβ4 is a potential therapeutic target for treating liver diseases.
    Full-text · Article · May 2015 · International Journal of Molecular Sciences