Changes in total body bone mineral density following a common bone health plan with two versions of a unique bone health supplement: A comparative effectiveness research study

Integrative Health Technologies, Inc,, 4940 Broadway, San Antonio, Texas 78209, USA.
Nutrition Journal (Impact Factor: 2.6). 04/2011; 10(1):32. DOI: 10.1186/1475-2891-10-32
Source: PubMed


The US Surgeon General's Report on Bone Health suggests America's bone-health is in jeopardy and issued a "call to action" to develop bone-health plans that: (1) improve nutrition, (2) increase health literacy and, (3) increase physical activity. This study is a response to this call to action.
After signing an informed consent, 158 adults agreed to follow an open-label bone-health plan for six months after taking a DXA test of bone density, a 43-chemistry blood test panel and a quality of life inventory (AlgaeCal 1). Two weeks after the last subject completed, a second group of 58 was enrolled and followed the identical plan, but with a different bone-health supplement (AlgaeCal 2).
There were no significant differences between the two groups in baseline bone mineral density (BMD) or in variables related to BMD (age, sex, weight, percent body fat, fat mass, or fat-free mass). In both groups, no significant differences in BMD or related variables were found between volunteers and non-volunteers or between those who completed per protocol and those who were lost to attrition.Both groups experienced a significant positive mean annualized percent change (MAPC) in BMD compared to expectation [AlgaeCal 1: 1.15%, p = 0.001; AlgaeCal 2: 2.79%, p = 0.001]. Both groups experienced a positive MAPC compared to baseline, but only AlgaeCal 2 experienced a significant change [AlgaeCal 1: 0.48%, p = 0.14; AlgaeCal 2: 2.18%, p < 0.001]. The MAPC in AlgaeCal 2 was significantly greater than that in AlgaeCal 1 (p = 0.005). The MAPC contrast between compliant and partially compliant subjects was significant for both plans (p = 0.001 and p = 0.003 respectively). No clinically significant changes in a 43-panel blood chemistry test were found nor were there any changes in self-reported quality of life in either group.
Following The Plan for six months with either version of the bone health supplement was associated with significant increases in BMD as compared to expected and, in AlgaeCal 2, the increase from baseline was significantly greater than the increase from baseline in AlgaeCal 1. Increased compliance was associated with greater increases in BMD in both groups. No adverse effects were reported in either group. NCT01114685.

Download full-text


Available from: Gilbert Kaats, May 29, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nutrition plays an important role in osteoporosis prevention and treatment. Substantial progress in both laboratory analyses and clinical use of biochemical markers has modified the strategy of anti-osteoporotic drug development. The present review examines the use of biochemical markers in clinical research aimed at characterising the influence of foods or nutrients on bone metabolism. The two types of markers are: (i) specific hormonal factors related to bone; and (ii) bone turnover markers (BTM) that reflect bone cell metabolism. Of the former, vitamin D metabolites, parathyroid hormone, and insulin-like growth factor-I indicate responses to variations in the supply of bone-related nutrients, such as vitamin D, Ca, inorganic phosphate and protein. Thus modification in bone remodelling, the key process upon which both pharmaceutical agents and nutrients exert their anti-catabolic or anabolic actions, is revealed. Circulating BTM reflect either osteoclastic resorption or osteoblastic formation. Intervention with pharmacological agents showed that early changes in BTM predicted bone loss and subsequent osteoporotic fracture risk. New trials have documented the influence of nutrition on bone-tropic hormonal factors and BTM in adults, including situations of body-weight change, such as anorexia nervosa, and weight loss by obese subjects. In osteoporosis-prevention studies involving dietary manipulation, randomised cross-over trials are best suited to evaluate influences on bone metabolism, and insight into effects on bone metabolism may be gained within a relatively short time when biochemical markers are monitored.
    Full-text · Article · Nov 2014 · Nutrition Research Reviews
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the macrominerals calcium, phosphorus, and magnesium are of primary concern in bone health, other minerals, including trace minerals can also play an important role. In this chapter, the role of some of these will be considered. In general, the data supporting and defining the role of the trace minerals in bone health is much less well developed than for the macrominerals. In many cases, studies have used animal models, which are difficult to extrapolate to humans. In others, the relationship between serum levels of minerals and markers of bone health or assessment of bone mineral density are described. These are difficult to interpret, and even if a correlation between low serum copper and low bone mineral density (for example) is demonstrated this does not mean that additional dietary copper would improve bone mineral density. Such relationships are confounded by the other lifestyle and socioeconomic factors that may cause such differences in dietary intakes. In addition, low-quality diets may be deficient in more than one nutrient, making it extremely difficult to ascribe the change to any single nutrient. There are very few well-designed intervention studies in humans that address the importance of trace and ultratrace minerals in human bone metabolism. The one exception appears to be strontium, where there is increasing good-quality data (i.e. randomized controlled studies) suggesting that high-risk adults may benefit from strontium supplementation.
    No preview · Chapter · Jan 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate whether fortification of yogurts with vitamin D and calcium exerts an additional lowering effect on serum parathyroid hormone (PTH) and bone resorption markers (BRM) as compared to iso-caloric and iso-protein dairy products in aged white women at risk of fragility fractures. A randomized double-blind controlled trial. A community dwelling home. Forty-eight women over 60 years (mean age 73.4). Consumption during 84 days of two 125 g servings of either vitamin D and calcium-fortified yogurts (FY) at supplemental levels of 10 µg vitamin D3/d and 520 mg/d of calcium (total=800 mg/d), or non fortified control yogurts (CY) providing 280 mg/d of calcium. Serum changes from baseline (D0) to D28, D56 and D84 in 25OHD, PTH and in two BRM: Tartrate-resistant-acid-phosphatase-isoform-5b (TRAP5b) and carboxy-terminal-cross-linked-telopeptide of type-I-collagen (CTX). The 10 years risk of major and hip fractures were 13.1 and 5.0%, and 12.9 and 4.2 %, in FY and CY groups, respectively. From D0 to D84, serum 25OHD increased (mean±SE) from 34.3±2.4 to 56.3±2.4 nmol/L in FY (n=24) and from 35.0±2.5 to 41.3±3.0 nmol/L in CY (n=24), (P=0.00001). The corresponding changes in PTH were from 64.1±5.1 to 47.4±3.8 ng/L in FY and from 63.5±4.6 to 60.7±4.2 ng/L in CY (P=0.0011). After D84, TRAP5b was reduced significantly (P=0.0228) and CTX fell though not significantly (P=0.0773) in FY compared to CY. This trial in aged white women living in a community dwelling home at risk for osteoporotic fractures confirms that fortification of dairy products with vitamin D3 and calcium should provide a greater prevention of secondary hyperparathyroidism and accelerated bone resorption as compared to non-fortified equivalent foods.
    No preview · Article · May 2015 · The Journal of Nutrition Health and Aging