Deletion of p120-Catenin Results in a Tumor Microenvironment with Inflammation and Cancer that Establishes It as a Tumor Suppressor Gene

Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Cancer cell (Impact Factor: 23.52). 04/2011; 19(4):470-83. DOI: 10.1016/j.ccr.2011.02.007
Source: PubMed


p120-catenin (p120ctn) interacts with E-cadherin, but to our knowledge, no formal proof that p120ctn functions as a bona fide tumor suppressor gene has emerged to date. We report herein that p120ctn loss leads to tumor development in mice. We have generated a conditional knockout model of p120ctn whereby mice develop preneoplastic and neoplastic lesions in the oral cavity, esophagus, and squamous forestomach. Tumor-derived cells secrete granulocyte macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-α (TNFα). The tumors contain significant desmoplasia and immune cell infiltration. Immature myeloid cells comprise a significant percentage of the immune cells present and likely participate in fostering a favorable tumor microenvironment, including the activation of fibroblasts.

Download full-text


Available from: John Alan Diehl
  • Source
    • "The biological interplay between p120 catenin and its family members is incompletely understood, especially during development. A number of studies have revealed critical yet diverse roles for p120 catenin in different organ systems (Bartlett et al., 2010; Davis and Reynolds, 2006; Elia et al., 2006; Kurley et al., 2012; Marciano et al., 2011; Oas et al., 2010; Perez-Moreno et al., 2006, 2008; Schackmann et al., 2013; Smalley-Freed et al., 2010; Smalley-Freed et al., 2011; Stairs et al., 2011; Tian et al., 2012). In p120 catenin conditional deletion studies, the results are highly tissue-specific and unpredictable. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, β-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120(f/f) pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development. Copyright © 2014. Published by Elsevier Inc.
    Full-text · Article · Dec 2014 · Developmental Biology
  • Source
    • "In addition, MDSCs can directly induce tumor progression and metastasis by producing matrix metalloproteinases that facilitate tumor invasion.38 In addition, the conditional deletion of p120 catenin in mice leads to esophageal squamous cancer accompanied by the recruitment of MDSCs to the dysplastic epithelium.39 These results support the finding that mobilization of MDSCs to the gastric epithelium provides a microenvironment to promote inflammation-associated dysplasia. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gastric cancer is the second most common cause of cancer-related death in the world. A growing body of evidence indicates that inflammation is closely associated with the initiation, progression, and metastasis of many tumors, including those of gastric cancer. In addition, approximately 60% of the world's population is colonized by Helicobacter pylori, which accounts for more than 50% of gastric cancers. While the role of inflammation in intestinal and colonic cancers is relatively well defined, its role in stomach neoplasia is still unclear because of the limited access of pathogens to the acidic environment and the technical difficulties isolating and characterizing immune cells in the stomach, especially in animal models. In this review, we will provide recent updates addressing how inflammation is involved in gastric malignancies, and what immune characteristics regulate the pathogenesis of stomach cancer. Also, we will discuss potential therapeutics that target the immune system for the efficient treatment of gastric cancer.
    Full-text · Article · Mar 2014 · Gut and Liver
  • Source
    • "The p120-catenin conditional knockout mouse exhibits hyperproliferation of skin keratinocytes with loss of E-cadherin protein and spontaneously develops invasive oral carcinomas [23,24]. Patients with advanced carcinomas frequently lose p120-catenin expression or mis-localize it in the cytoplasm and/or nucleus [24–27]. We confirmed that the loss of membrane expression was significant in the dedifferentiated and invasive carcinomas. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The binding of p120-catenin and β-catenin to the cytoplasmic domain of E-cadherin establishes epithelial cell-cell adhesion. Reduction and loss of catenin expression degrades E-cadherin-mediated carcinoma cell-cell adhesion and causes carcinomas to progress into aggressive states. Since both catenins are differentially regulated and play distinct roles when they dissociate from E-cadherin, evaluation of their expression, subcellular localization and the correlation with E-cadherin expression are important subjects. However, the same analyses are not readily performed on squamous cell carcinomas in which E-cadherin expression determines the disease progression. In the present study, we examined expression and subcellular localization of p120-catenin and β-catenin in oral carcinomas (n = 67) and its implications in the carcinoma progression and E-cadherin expression using immunohitochemistry. At the invasive front, catenin-membrane-positive carcinoma cells were decreased in the dedifferentiated (p120-catenin, P < 0.05; β-catenin, P < 0.05) and invasive carcinomas (p120-catenin, P < 0.01; β-catenin, P < 0.05) and with the E-cadherin staining (p120-catenin, P < 0.01; β-catenin, P < 0.01). Carcinoma cells with β-catenin cytoplasmic and/or nuclear staining were increased at the invasive front compared to the center of tumors (P < 0.01). Although the p120-catenin isoform shift from three to one associates with carcinoma progression, it was not observed after TGF-β, EGF or TNF-α treatments. The total amount of p120-catenin expression was decreased upon co-treatment of TGF-β with EGF or TNF-α. The above data indicate that catenin membrane staining is a primary determinant for E-cadherin-mediated cell-cell adhesion and progression of oral carcinomas. Furthermore, it suggests that loss of p120-catenin expression and cytoplasmic localization of β-catenin fine-tune the carcinoma progression.
    Preview · Article · Aug 2013 · PLoS ONE
Show more