Diversity of genetic lineages among CTX-M-15 and CTX-M-14 producing

Faculté des Sciences de Tunis, Laboratoire Microorganismes et Biomolécules Actives, Université Tunis-El Manar, 2092, Tunis, Tunisia.
Current Microbiology (Impact Factor: 1.42). 06/2011; 62(6):1794-801. DOI: 10.1007/s00284-011-9930-4
Source: PubMed


Fourteen broad-spectrum-cephalosporin-resistant Escherichia coli isolates were recovered between June and December 2007 in a Tunisian hospital. Genes encoding extended-spectrum-beta-lactamases (ESBL) and other resistance genes were characterized by PCR and sequencing. The following ESBL genes were identified: bla (CTX-M-15) (12 isolates), bla (CTX-M-14a) (one isolate), and bla (CTX-M-14b) (one isolate). The bla (OXA-1) gene was detected in 13 bla (CTX-M)-producing strains and a bla (TEM-1) gene in 6 of them. The ISEcp1 sequence was found upstream of bla (CTX-M) genes in 8 of 14 strains, and orf477 or IS903 downstream of this gene in 13 strains. Nine of the strains carried class 1 integrons and five different gene cassette arrangements were detected, dfrA17-aadA5 being the most common. One of the strains (bla (CTX-M-14a)-positive) harbored three class 1 integrons, and one of them was non-previously described containing as gene cassettes new variants of aac(6')-Ib and cmlA1 genes and it was linked to the bla (CTX-M-14a) gene flanked by a truncated ISEcp1 sequence (included in GenBank with accession number JF701188). CTX-M-15-producing strains were ascribed to phylogroup B2 (six isolates) and D (six isolates). Multilocus-sequence-typing revealed ten different sequence-types (STs) among ESBL-positive E. coli strains with prevalence of ST405 (four strains of phylogroup D) and ST131 types (two strains of phylogroup B2 and serogroup O25b). A high clonal diversity was also observed among studied strains by pulsed-field-gel-electrophoresis (11 unrelated profiles). CTX-M-15 is an emergent mechanism of resistance in the studied hospital and the world-disseminated 0:25b-ST131-B2 and ST405-D clones have been identified among CTX-M-15-producing isolates.

Download full-text


Available from: Sergio Somalo
  • Source
    • "CTX-M-15 is the most prevalent gene in a high proportion of the samples, disregarding country. It is usually combined with other types of CTX-M, TEM, and SHV genes (17–19, 22, 25, 28, 29, 34, 38, 40–43, 46, 51, 53, 56–59, 65–67, 69, 70, 78). There is a high proportion of class D ESBLs existent, mainly OXA-1, and it has been found in between 3.3 and 93.3% of the studied isolates (34, 38, 40, 53, 54, 58, 59, 67, 69, 78, 80). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBL) has been found all over the world, and risk factors for acquiring these bacteria involve hospital care and antibiotic treatment. Surveillance studies are present in Europe, North America, and Asia, but there is no summarizing research published on the situation in Africa. This review aims to describe the prevalence of ESBL-producing Enterobacteriaceae in hospital and community settings in Africa and the ESBL genes involved. A non-systematic literature search was performed in PubMed. All articles published between 2008 and 2012 were screened and read in full text. Relevant articles were assessed for quality of evidence and included in the review. Articles were divided into regional areas in Africa and tabulated. ESBL-producing Enterobacteriaceae in hospitalized patients and in communities varies largely between countries and specimens but is common in Africa. ESBLs (class A and D) and plasmid-encoded AmpC (pAmpC) were regularly found, but carbapenemases were also present. ESBL-producing Enterobacteriaceae in hospital and community settings in Africa is common. Surveillance of antimicrobial resistance needs to be implemented in Africa to tailor interventions targeted at stopping the dissemination of ESBL-producing Enterobacteriaceae.
    Full-text · Article · Mar 2014
  • Source
    • "Accordingly, in the present study, 24/101 (23.7%) of the CTX-M-15-producing strains belonged to clone ST131. E. coli ST131 was previously reported in Tunisia in different hospitals since 2005 [13,14,24,25]. One of the Tunisian studies performed in Sousse from May 2005 to May 2006 identified clone ST131 in 23/31 (74%) of CTX-M-15-producing E. coli and showed that these 23 isolates had the same pulsotype and the same virulence genotype [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Extended-spectrum beta-lactamases (ESBLs), particularly CTX-M- type ESBLs, are among the most important resistance determinants spreading worldwide in Enterobacteriaceae. The aim of this study was to characterize a collection of 163 ESBL-producing Escherichia coli collected in Tunisia, their ESBL-encoding plasmids and plasmid associated addiction systems. The collection comprised 163 ESBL producers collected from two university hospitals of Sfax between 1989 and 2009. 118 isolates harbored blaCTX-M gene (101 blaCTX-M-15 gene and 17 blaCTX-M-14 gene). 49 isolates carried blaSHV-12 gene, 9 blaSHV-2a gene and only 3 blaTEM-26 gene. 16 isolates produced both CTX-M and SHV-12. The 101 CTX-M-15-producing isolates were significantly associated to phylogroup B2 and exhibiting a high number of virulence factors. 24 (23.7%) of the group B2 isolates belonged to clonal complex ST131. Pulsed-field gel electrophoresis (PFGE) typing revealed a genetic diversity of the isolates. 144 ESBL determinants were transferable mostly by conjugation. The majority of plasmid carrying blaCTX-M-15 genes (72/88) were assigned to various single replicon or multireplicon IncF types and had significantly a higher frequency of addiction systems, notably the VagCD module. This study demonstrates that the dissemination of CTX-M-15 producing E. coli in our setting was due to the spread of various IncF-type plasmids harboring multiple addiction systems, into related clones with high frequency of virulence determinants.
    Full-text · Article · Jun 2013 · BMC Microbiology
  • Source
    • "Most β-lactamases, particularly those encoding CTX-M-14 and −15 and CMY-2, were physically linked to ISEcp1. Similar reports have been published in Tunisian [20,21] but no ISEcp1 was detected upstream the bla-CTX-M-1 among our isolates as reported in a related study from the same country [22]. In one isolate, this element was found upstream the blaCTX-M-9. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We determined the prevalence and evidence for physical linkage amongst integrons, insertion sequences, Tn21 and Tn7 transposons in a collection of 1327 E. coli obtained over a 19-year period from patients in Kenya. Results The prevalence of class 1 integrons was 35%, class 2 integrons were detected in 3 isolates but no isolate contained a class 3 integron. Integron lacking the 3’-CS or those linked to sul3 gene or IS26 or those containing the ISCR1 were only detected in multidrug resistant (MDR) strains. The dfrAs were the most common cassettes and their prevalence was: - dfrA1(28%), dfrA12(20%), dfA17(9%), dfrA7(9%), and dfrA16(5%). The aadA were the second most abundant cassettes and their prevalence was: - aadA1(25%), aadA2(21%), and aadA5(14%). Other cassettes occurred in lower prevalence of below 5%. Prevalence of Tn21, ISEcp1, ISCR1 and IS26 was 22%, 10%, 15%, and 7% respectively. Majority of Tn21 containing integrons carried a complete set of transposition genes while class 2 integrons were borne on Tn7 transposon. The qnrA genes were detected in 34(3%) isolates while 19(1%) carried qnrB. All qnr genes were in MDR strains carrying integrons containing the ISCR1. Close to 88% of blaTEM-52 were linked to IS26 while ≥ 80% of blaCTX-Ms and blaCMYs were linked to ISEcp1. Only a few studies have identified a blaCTX-M-9 containing an ISEcp1 element as reported in this study. Multiple genetic elements, especially those borne on incIl, incFII, and incL/M plasmids, and their associated resistance genes were transferrable en bloc to E. coli strain J53 in mating experiments. Conclusions This is the first detailed study on the prevalence of selected elements implicated in evolution of resistance determinants in a large collection of clinical E. coli in Africa. Proliferation of such strains carrying multiple resistance elements is likely to compromise the use of affordable and available treatment options for majority of poor patients in Africa. There is therefore a need to monitor the spread of these highly resistant strains in developing countries through proper infection control and appropriate use of antimicrobials.
    Full-text · Article · May 2013 · BMC Microbiology
Show more