A La Autoantigen Homologue Is Required for the Internal Ribosome Entry Site Mediated Translation of Giardiavirus

Emory University, United States of America
PLoS ONE (Impact Factor: 3.23). 03/2011; 6(3):e18263. DOI: 10.1371/journal.pone.0018263
Source: PubMed


Translation of Giardiavirus (GLV) mRNA is initiated at an internal ribosome entry site (IRES) in the viral transcript. The IRES localizes to a downstream portion of 5' untranslated region (UTR) and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA), known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200-348aa) of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus.

Download full-text


Available from: Ashesh A Saraiya
  • Source
    • "miRNAs and siRNAs to be important effectors in host– pathogen interaction networks between humans and their viruses (Aurrecoechea et al., 2009), most of which use RNA interference processes. RNA interference (RNAi) has also been raised as an option for medical treatment of human diseases including cancer (Garlapati et al., 2011), viruses (Khaliq et al., 2010; Haasnoot and Berkhout, 2011), and transplantation (Zhang et al., 2011b). RNA interference in general, is a process where small RNAs (e.g., miRNAs and siRNAs) are used by a protein macromolecule, to target and then to cleave transcribed mRNAs, hence " interfering " with the expression of a targeted gene. "
    [Show abstract] [Hide abstract]
    ABSTRACT: ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.
    Preview · Article · Dec 2011 · Frontiers in Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Necroptosis is a type of regulated form of cell death that has been implicated in the pathogenesis of various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family of proteins, has been reported as an important necroptotic pathway mediator in regulating a variety of human diseases, such as myocardial ischemia, inflammatory bowel disease, and ischemic brain injury. Our previous study showed that RIP3 was expressed in rat retinal ganglion cells (RGCs), where it was significantly upregulated during the early stage of acute high intraocular pressure. Furthermore, RIP3 expression was co-localized with propidium iodide (PI)-positive staining (necrotic cells). These results suggested that RIP3 up-regulation might be involved in the necrosis of injured RGCs. In this study, we aimed to reveal the possible involvement of RIP3 in oxygen glucose deprivation (OGD)-induced retinal ganglion cell-5 (RGC-5) necroptosis. RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8 h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. RIP3 expression was detected by western blot and flow cytometry was used to detect the effect of RIP3 on RGC-5 necroptosis following OGD in rip3 knockdown cells. Malondialdehyde (MDA) lipid peroxidation assay was performed to determine the degree of oxidative stress. PI staining showed that necrosis was present in the early stage of OGD-induced RGC-5 cell death. The presence of RGC-5 necroptosis after OGD was detected by flow cytometry using necrostatin-1, a necroptosis inhibitor. Western blot demonstrated that RIP3 up-regulation may be involved in RGC-5 necroptosis. Flow cytometry revealed that the number of OGD-induced necrotic RGC-5 cells was reduced after rip3 knockdown. Furthermore, MDA levels in the normal RGC-5 cells were much higher than in the rip3-knockdown cells after OGD. Our findings suggest that RGC-5 cell necroptosis following OGD is mediated by a RIP3-induced increase in oxidative stress.
    Full-text · Article · Aug 2015 · BMC Neuroscience