Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver

Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
Blood (Impact Factor: 10.45). 03/2011; 117(19):5215-23. DOI: 10.1182/blood-2010-10-313239
Source: PubMed


Aged or damaged RBCs are effectively removed from the blood circulation by Kupffer cells in the liver, but little is known regarding the mechanism of the clearance process. Here we show that stabilin-1 and stabilin-2 in hepatic sinusoidal endothelial cells (HSECs) are critical in effectively clearing damaged RBCs in mouse liver. Damaged RBCs and phosphatidylserine (PS)-coated beads were effectively sequestered in the hepatic sinusoid regardless of the presence of Kupffer cells, suggesting a role for HSECs in PS-dependent sequestration of PS-exposed RBCs in the liver. HSECs mediate tethering of damaged RBCs in a PS-dependent manner via stabilin-1 and stabilin-2. In a sinusoid-mimicked coculture system consisting of macrophages layered over HSECs, there was significant enhancement of the phagocytic capacity of macrophages, and this was mediated by stabilin-1 and stabilin-2 in HSECs. Liver-specific knockdown of stabilin-1 and stabilin-2 inhibited the sequestration of damaged RBCs in the hepatic sinusoid and delayed the elimination of damaged cells in an in vivo animal model. Thus, the roles of stabilin-1 and stabilin-2 in hepatic sequestration of PS-exposed RBCs may represent a potential mechanism for the clearance of damaged RBCs by Kupffer cells and for the control of some pathologic conditions such as hemolytic anemia.

Download full-text


Available from: Mi-Yeon Jung
    • "It is interesting to question whether even in the presence of heavy leukemia or other tumour burdens saturation of the reticulo-endothelial system is possible given its huge capacity for cellular uptake and clearance. Indeed under normal homeostatic conditions phagocytic cells of the liver and spleen have been calculated to clear 2 million red blood cells per second [47]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies (mAb) have revolutionised the way in which we treat disease. From cancer to autoimmunity, antibody therapy has been responsible for some of the most impressive clinical responses observed in the last 2 decades. A key component of this success has been their generally low levels of toxicity, and unique mechanisms of action. These two facets have allowed them to (a) be integrated rapidly into clinical practice in combination with conventional radio- and chemo-therapies and (b) to avoid the resistance mechanisms typically observed with classical small molecule drugs, such as upregulation of drug efflux transporters, dysregulation of apoptosis and mutations in key target enzymes/pathways. Although success with mAb therapies has been impressive, they are also subject to their own resistance mechanisms. In this perspective we discuss the various ways in which mAb therapeutics can be inhibited, concentrating mainly on the ways in which they can be removed from the target cell surface-a process called modulation. This can be achieved either in a cis-fashion on a single cell or in trans, precipitated by engagement with a second phagocytic cell. The evidence for each of these processes will be discussed, in addition to possible therapeutic strategies that might be employed to inhibit or reverse them. Copyright © 2015. Published by Elsevier Ltd.
    No preview · Article · Jul 2015 · Pharmacological Research
  • Source
    • "Experiments with the PM-coated fluorescentlylabelled beads furthermore showed that various types of PM (PM ap , PM thr , PM iono and PM sonic ) are taken up by the cells via a phagocytosis process. Remarkably, inhibitor studies indicated that CD14, CD36 or phosphatidylserine were not involved in PM ap binding (and uptake), in spite of the established role of these membrane components in apoptotic body clearance [34] [35]. Uptake of PM has also been described for other cells, in particular (progenitor) endothelial cells [26, 36]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Platelet microparticles (PM) are the most abundant cell-derived microparticles in the blood, and accumulate in thrombo-inflammatory diseases. Platelets produce PM upon aging via an apoptosis-like process and by activation with strong agonists. We previously showed that long-term treatment of monocytic cells with apoptosis-induced PM (PMap) promotes their differentiation into resident macrophages. Here we investigated shorter term effects of various types of PM on monocyte signalling and function. Methods and results: Flow cytometry and scanning electron microscopy revealed that PM formed upon platelet aging (PMap) or ultra-sonication (PMsonic) expressed activated αIIbβ3 integrins and tended to assemble into aggregates. In contrast, PM formed upon platelet activation with thrombin (PMthr) or Ca(2+) ionophore (PMiono) had mostly non-activated αIIbβ3 and little aggregate formation, but had increased CD63 expression. PM from activated and sonicated platelets expressed phosphatidylserine at their surface, while only the latter were enriched in the receptors CD40L and CX3CR1. All PM types expressed P-selectin, interacted with monocytic cells via this receptor, and were internalised into these cells. The various PM types promoted actin cytoskeletal rearrangements and hydrogen peroxide production by monocytic cells. Markedly, both aging- and activation-induced PM types stimulated the phosphoinositide 3-kinase/Akt pathway, suppressing apoptosis induced by several agonists, in a P-selectin-dependent manner. On the other hand, the PM types differentially influenced monocyte signalling in eliciting Ca(2+) fluxes (particularly PMap) and in releasing secondary mediators (complement factor C5a with PMap, and pro-inflammatory tumour necrosis factor-α with PMthr). Conclusions: In spite of their common anti-apoptotic potential via Akt activation, aging- and activation-induced PM cause different Ca(2+) signalling events and mediator release in monocytic cells. By implication, aging and activated platelets may modulate monocyte function in different way by the shedding of different PM types.
    Full-text · Article · May 2013 · American Journal of Blood Research
  • Source
    • "However, phagocytosis can execute cell death of viable cells, and we shall refer to this form of cell death as " primary phagocytosis, " with the defining characteristic that inhibition of phagocytosis prevents cell death. Examples of primary phagocytosis outside the brain include macrophage phagocytosis of " aged " erythrocytes (Föller et al., 2008; Lee et al., 2011) and activated neutrophils (Lagasse and Weissman, 1994; Jitkaew et al., 2009; Stowell et al., 2009; Bratton and Henson, 2011). In C. elegans, primary phagocytosis has been shown to contribute to programmed cell death of neuronal precursors during development (Hoeppner et al., 2001; Reddien et al., 2001), the elimination of cells subjected to sub-toxic insults (Neukomm et al., 2011) or simply as a result of phosphatidylserine (PS) exposure on the surface of cells (Darland-Ransom et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglial phagocytosis of dead or dying neurons can be beneficial by preventing the release of damaging and/or pro-inflammatory intracellular components. However, there is now evidence that under certain conditions, such as inflammation, microglia can also phagocytose viable neurons, thus executing their death. Such phagocytic cell death may result from exposure of phosphatidylserine (PS) or other eat-me signals on otherwise viable neurons as a result of physiological activation or sub-toxic insult, and neuronal phagocytosis by activated microglia. In this review, we discuss the mechanisms of phagocytic cell death and its potential roles in Alzheimer's Disease, Parkinson's Disease, and Frontotemporal Dementia.
    Full-text · Article · Feb 2012 · Frontiers in Pharmacology
Show more