Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females

Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
PLoS ONE (Impact Factor: 3.23). 03/2011; 6(3):e17690. DOI: 10.1371/journal.pone.0017690
Source: PubMed


Aedes aegypti is the main vector of the virus causing Dengue fever, a disease that has increased dramatically in importance in recent decades, affecting many tropical and sub-tropical areas of the globe. It is known that viruses and other parasites can potentially alter vector behavior. We investigated whether infection with Dengue virus modifies the behavior of Aedes aegypti females with respect to their activity level.
We carried out intrathoracic Dengue 2 virus (DENV-2) infections in Aedes aegypti females and recorded their locomotor activity behavior. We observed an increase of up to ∼50% in the activity of infected mosquitoes compared to the uninfected controls.
Dengue infection alters mosquito locomotor activity behavior. We speculate that the higher levels of activity observed in infected Aedes aegypti females might involve the circadian clock. Further studies are needed to assess whether this behavioral change could have implications for the dynamics of Dengue virus transmission.

Download full-text


Available from: Marcia Castro
    • "Virus infection may alter mosquito motility or feeding behavior (Berry et al. 1986, Platt et al. 1997, Lee et al. 2000). For example, in Aedes aegypti (L.) infected with dengue virus, locomotor activity was increased compared with uninfected controls (Lima-Camara et al. 2011). Conversely, when Aedes trivittatus Coquillett were infected with trivittatus virus, there was no significant difference in spontaneous flight activity compared with uninfected controls (Berry et al. 1987). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Insect-specific flaviviruses (ISFVs) commonly infect vectors of mosquito-borne arboviruses. To investigate whether infection with an ISFV might affect mosquito flight behavior, we quantified flight behavior in Culex pipiens L. naturally infected with Culex flavivirus (CxFV). We observed a significant reduction in the scotophase (dark hours) flight activity of CxFV-positive mosquitoes relative to CxFV-negative mosquitoes, but only a marginal reduction in photophase (light hours) flight activity, and no change in the circadian pattern of flight activity. These results suggest that CxFV infection alters the flight activity of naturally infected Cx. pipiens most dramatically when these vectors are likely to be host seeking and may therefore affect the transmission of medically important arboviruses.
    No preview · Article · Oct 2015 · Journal of Medical Entomology
    • "Microbial challenges can disrupt patterns of locomotion and physiological function. Increased activity was documented in female Aedes aegypti within 2–6 days after infection with Dengue virus, likely because this virus targets nervous tissues (Camara et al. 2011 ). Circadian control of activity was rapidly disrupted in D. melanogaster injected with the grampositive bacteria Streptococcus pneumonia and Listeria monocytogenes (). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Extensive similarities in the molecular architecture of the crustacean immune system to that of insects give credence to the current view that the Hexapoda, including Insecta, arose within the clade Pancrustacea. The crustacean immune system is mediated largely by hemocytes, relying on suites of pattern recognition receptors, effector functions, and signaling pathways that parallel those of insects. In crustaceans, as in insects, the cardiovascular system facilitates movement of hemocytes and delivery of soluble immune factors, thereby supporting immune surveillance and defense along with other physiological functions such as transport of nutrients, wastes, and hormones. Crustaceans also rely heavily on their cardiovascular systems to mediate gas exchange; insects are less reliant on internal circulation for this function. Among the largest crustaceans, the decapods have developed a condensed heart and a highly arteriolized cardiovascular system that supports the metabolic demands of their often large body size. However, recent studies indicate that mounting an immune response can impair gas exchange and metabolism in their highly developed vascular system. When circulating hemocytes detect the presence of potential pathogens, they aggregate rapidly with each other and with the pathogen. These growing aggregates can become trapped in the microvasculature of the gill where they are melanized and may be eliminated at the next molt. Prior to molting, trapped aggregates of hemocytes also can impair hemolymph flow and oxygenation at the gill. Small shifts to anaerobic metabolism only partially compensate for this decrease in oxygen uptake. The resulting metabolic depression is likely to impact other energy-expensive cellular processes and whole-animal performance. For crustaceans that often live in microbially-rich, but oxygen-poor aquatic environments, there appear to be distinct tradeoffs, based on the gill's multiple roles in respiration and immunity. Insects have developed a separate tracheal system for the delivery of oxygen to tissues, so this particular tradeoff between oxygen transport and immune function is avoided. Few studies in crustaceans or insects have tested whether mounting an immune response might impact other functions of the cardiovascular system or alter integrity of the gut, respiratory, and reproductive epithelia where processes of the attack on pathogens, defense by the host, and physiological functions play out. Such tradeoffs might be fruitfully addressed by capitalizing on the ease of molecular and genetic manipulation in insects. Given the extensive similarities between the insect and the crustacean immune systems, such models of epithelial infection could benefit our understanding of the physiological consequences of immune defense in all of the Pancrustacea. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email:
    No preview · Article · Jul 2015 · Integrative and Comparative Biology
  • Source
    • "albopictus females when testing flight, sugar-feeding and host-seeking activities under laboratory conditions [18,28,29]. In addition, under laboratory conditions, it has been reported that parasite-vector interactions, such as dengue virus- Ae. aegypti infection, as well as genetic mutations which denote insecticide resistance by the vector do not change the pattern of activity of Ae. aegypti, but increase the locomotor activity of females [24,30]. Although it has been reported that physiological states, such as insemination and blood-feeding, affect the flight activity of Ae. aegypti females [18], it has not been evaluated up to now how drastic changes in these physiological states could affect the locomotor activity pattern of Ae. aegypti and Ae. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Dengue is an arbovirus disease transmitted by two Aedes mosquitoes: Ae. aegypti and Ae. albopictus. Virgin females of these two species generally show a bimodal and diurnal pattern of activity, with early morning and late afternoon peaks. Although some studies on the flight activity of virgin, inseminated and blood-fed Ae. aegypti females have been carried out under laboratory conditions, little is known about the effects of such physiological states on the locomotor activity of Ae. albopictus and Ae. aegypti females. The aim of this study was to analyze, under laboratory conditions, the effects of insemination and blood-feeding on the locomotor activity of Ae. albopictus and Ae. aegypti females under LD 12:12, at 25°C. Both Ae. albopictus and Ae. aegypti females were obtained from established laboratory colonies. Control groups were represented by virgin/unfed Ae. albopictus and Ae. aegypti females. Experiments were conducted under laboratory conditions, using an activity monitor that registers individual activity every thirty minutes. Virgin/unfed Ae. albopictus and Ae. aegypti females showed a diurnal and bimodal pattern of locomotor activity, with peaks at early morning and late afternoon. Insemination and blood-feeding significantly decreased the locomotor activity of Ae. aegypti females, but inseminated/blood-fed Ae. aegypti and Ae. albopictus females showed a similar significant decrease on the locomotor activity compared to virgin/unfed females. This study is the first demonstration of the effects of insemination and blood-feeding on the locomotor activity of Ae. albopictus and Ae. aegypti females under artificial conditions. Data suggest that Ae. albopictus and Ae. aegypti females respond in different ways to physiological status changes and such divergence between these two dengue vectors, associated with several ecological differences, could be related to the greater dengue vectorial capacity of Ae. aegypti in Americas in comparison to Ae. albopictus.
    Full-text · Article · Jul 2014 · Parasites & Vectors
Show more