MiRNA profiles of prostate carcinoma detected by multi-platform miRNA screening. Int J Cancer

University Clinic of Urology, Friedrich-Alexander-University Erlangen-Nürnberg, Krankenhausstrasse 12, 91054 Erlangen, Germany.
International Journal of Cancer (Impact Factor: 5.09). 02/2012; 130(3):611-21. DOI: 10.1002/ijc.26064
Source: PubMed


MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression via posttranscriptional inhibition of protein synthesis. They play a vital role in tumorigenesis. To characterize the diagnostic potential of miRNAs in prostate cancer, a leading cause of cancer mortality, we performed screening of miRNA expression profiles. We used commercially available microarrays to establish miRNA expression profiles from a cohort of 20 cancer samples. The expression of selected miRNAs was analyzed by quantitative real-time PCR and the identity of miRNA expressing cells was determined by miRNA in situ hybridization. We identified 25 miRNAs that showed a significant differential expression in cancer samples. The comparison with previously published data generated by deep sequencing of cDNA libraries of small RNA molecules revealed a concordance rate of 47% among miRNAs identified with both techniques. The differential expression of miRNAs miR-375, miR-143 and miR-145 was validated by quantitative PCR. MiRNA in situ hybridization revealed that the differential expression is cancer-cell associated. A combination of three miRNAs correctly classified tissue samples with an accuracy of 77.6% with an area under the receiver-operator characteristic curve of 0.810. Our data extend the knowledge about the deregulation of miRNAs in prostate cancer. The differential expression of several miRNAs is highly consistent using independent cohorts of tumor samples, different tissue preservation methods and different experimental methods. Our results indicate that combinations of miRNAs are promising biomarkers for the diagnosis of prostate cancer.

22 Reads
  • Source
    • "Of the four, miR-143, miR-145, and miR- 375 were best at distinguishing between malignant and nonmalignant tumors. Considering the three in conjunction, they were able to correctly distinguish between malignant and nonmalignant samples 77.6% of the time [17]. If a cancer type already has a standard method of subtype characterization it is possible for researchers to develop a miRNA screen around the molecular markers used for diagnosis; this was employed by Leivonen et al. with HER2 positive breast cancer lines and two patient cohorts. "
    [Show abstract] [Hide abstract]
    ABSTRACT: First discovered in 1993, microRNAs (miRNAs) have been one of the hottest research areas over the past two decades. Oftentimes, miRNAs levels are found to be dysregulated in cancer patients. The potential use of miRNAs in cancer therapies is an emerging and promising field, with research finding miRNAs to play a role in cancer initiation, tumor growth, and metastasis. Therefore, miRNAs could become an integral part from cancer diagnosis to treatment in future. This review aims to examine current novel research work on the potential roles of miRNAs in cancer therapies, while also discussing several current challenges and needed future research.
    Full-text · Article · Jul 2014 · BioMed Research International
  • Source
    • "Mature miR-143, 21 nucleotides in length, is down-regulated in prostate cancer and is, therefore, a potential biomarker of prostate cancer [31]. Thus, miR-143 was used as a model target miRNA to evaluate the LASH assay. "
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) can be used as biomarkers for cancer and other human diseases; therefore, high-throughput and reliable miRNA-quantification methods are required to exploit these markers for diagnostic testing. In this report, we describe the construction of a platform for miRNA-quantification using ligase-assisted sandwich hybridization (LASH) without miRNA-labeling. T4 DNA ligase was used to compensate for the low affinity between miRNAs and two short complementary DNA probes, and it improved the hybridization yield ∼50,000 times. The LASH assay enabled synthesized miR-143 to be quantified at concentrations ranging from 30 fM to 30 pM. The LASH assay could also quantify endogenous miR-143 released from cultured cells as well as some miRNAs in total RNAs derived from blood. Furthermore, multi-color detection enabled us to distinguish between the highly homologous miR-141 and miR-200a. This simple label-free quantification technique is an easy-to-use approach that can be applied to disease diagnosis.
    Full-text · Article · Mar 2014 · PLoS ONE
  • Source
    • "Furthermore, none of the profiling studies evaluated associations of the particular miRNAs with clinicopathological parameters or has further analyzed them with regard to the regulation of potential target genes [25,28-32]. Only in the qPCR-based study by Mavridis et al., miR-224 expression was reported to be gradually decreased as Gleason score and tumor stage progressed and also to be associated with a favorable prognosis [43]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction.
    Full-text · Article · Feb 2014 · BMC Cancer
Show more