Pharmacological Activation of p53 in Cancer Cells

ArticleinCurrent pharmaceutical design 17(6):631-9 · March 2011with16 Reads
DOI: 10.2174/138161211795222595 · Source: PubMed
Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-translationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss-of-function or gain-of-function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of activated p53 on neoplastic progression.
    • "The effect of p53 activation by this type of inhibitor in normal tissues has an immense interest from a therapeutic perspective due to the possibility of using it in monotherapy, as well as protector of normal cells in combination with more aggressive agents [11,12]. Throughout the last ten years, great advances were made in devising strategies to modulate p53, giving rise to several review papers on the subject [3,[12][13][14][15][16][17][18][19][20][21][22][23][24][25]. Pharmacological p53 reactivation strategies for cancer therapy can be clustered in two major approaches based on p53 status. "
    [Show abstract] [Hide abstract] ABSTRACT: Among the tumor suppressor genes, p53 is one of the most studied. It is widely regarded as the “guardian of the genome”, playing a major role in carcinogenesis. In fact, direct inactivation of the TP53 gene occurs in more than 50% of malignancies, and in tumors that retain wild-type p53 status, its function is usually inactivated by overexpression of negative regulators (e.g., MDM2 and MDMX). Hence, restoring p53 function in cancer cells represents a valuable anticancer approach. In this review, we will present an updated overview of the most relevant small molecules developed to restore p53 function in cancer cells through inhibition of the p53-MDMs interaction, or direct targeting of wild-type p53 or mutated p53. In addition, optimization approaches used for the development of small molecules that have entered clinical trials will be presented.
    Full-text · Article · May 2016
    • "P53 is the core sensor in response to DNA damage. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs [30][31][32][33]. APC/C is a type of multifunctional ubiquitin-protein ligase that targets various substrates for proteolysis inside and outside of the cell cycle [34]. "
    [Show abstract] [Hide abstract] ABSTRACT: Cancer dormancy is a stage in tumor progression in which residual disease remains occult and asymptomatic for a prolonged period. Cancer cell dormancy is the main cause of cancer recurrence and failure of therapy. However, cancer dormancy is poorly characterized and the mechanisms of how cancer cells develop dormancy and relapse remain elusive. In this study, 5- fluorouracil (5-FU) was used to induce cancer cell dormancy. We found that cancer cells escape the cytotoxicity of 5-FU by becoming "dormant". After exposure to 5-FU, residual non-small cell lung cancer (NSCLC) cells underwent epithelial-mesenchymal transition (EMT), followed by mesenchymal-epithelial transition (MET). These EMT-transformed NSCLC cells were in the state of cell quiescence where cells were not dividing and were arrested in the cell cycle in G0-G1. The dormant cells underwent an EMT showed characteristics of cancer stem cells. P53 is strongly accumulated in response to 5-FU-induced dormant cells through the activation of ubiquitin ligase anaphase-promoting complex (APC/C) and TGF-β/Smad signaling. In contrast to the EMT-transformed cells, MET-transformed cells showed an increased ability to proliferate, suggesting that dormant EMT cells were reactivated in the MET process. During the EMT-MET process, DNA repair including nonhomologous end joining (NHEJ) and homologous recombination (HR) is critical to dormant cell reactivation. Our findings provide a mechanism to unravel cancer cell dormancy and reactivation of the cancer cell population.
    Full-text · Article · Mar 2016
    • "Hence, the restoration of tumor suppressor gene function is a promising strategy for therapeutic intervention and/or prevention of carcinogenesis. For example, the restoration of a tumor suppressor protein, TP53, is well reported for the discovery of novel cancer chemotherapeutics [56]. Relatively less attention has been given to understanding the mechanisms of function of tumor suppressor proteins as targets for new anticancer therapies as compared to the extensive research regarding those of oncogenes. "
    [Show abstract] [Hide abstract] ABSTRACT: Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.
    Full-text · Article · Dec 2015
Show more