Article

Pharmacological Activation of p53 in Cancer Cells

Department of Dermatology, The University of Alabama at Birmingham, Volker Hall, Room 509, 1530 3rd Avenue South, Birmingham, Alabama 35294-0019, USA.
Current pharmaceutical design (Impact Factor: 3.45). 03/2011; 17(6):631-9. DOI: 10.2174/138161211795222595
Source: PubMed

ABSTRACT

Tumor suppressor p53 is a transcription factor that regulates a large number of genes and guards against genomic instability. Under multiple cellular stress conditions, p53 functions to block cell cycle progression transiently unless proper DNA repair occurs. Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. p53 also induces permanent cell cycle arrest known as cellular senescence. During neoplastic progression, p53 is often mutated and fails to efficiently perform these functions. It has been observed that cancers carrying a wild-type p53 may also have interrupted downstream p53 regulatory signaling leading to disruption in p53 functions. Therefore, strategies to reactivate p53 provide an attractive approach for blocking tumor pathogenesis and its progression. p53 activation may also lead to regression of existing early neoplastic lesions and therefore may be important in developing cancer chemoprevention protocols. A large number of small molecules capable of reactivating p53 have been developed and some are progressing through clinical trials for prospective human applications. However, several questions remain to be answered at this stage. For example, it is not certain if pharmacological activation of p53 will restore all of its multifaceted biological responses, assuming that the targeted cell is not killed following p53 activation. It remains to be demonstrated whether the distinct biological effects regulated by specific post-translationally modified p53 can effectively be restored by refolding mutant p53. Mutant p53 can be classified as a loss-of-function or gain-of-function protein depending on the type of mutation. It is also unclear whether reactivation of mutant p53 has similar consequences in cells carrying gain-of-function and loss-of-function p53 mutants. This review provides a description of various pharmacological approaches tested to activate p53 (both wild-type and mutant) and to assess the effects of activated p53 on neoplastic progression.

0 Followers
 · 
15 Reads
  • Source
    • "Hence, the restoration of tumor suppressor gene function is a promising strategy for therapeutic intervention and/or prevention of carcinogenesis. For example, the restoration of a tumor suppressor protein, TP53, is well reported for the discovery of novel cancer chemotherapeutics[56]. Relatively less attention has been given to understanding the mechanisms of function of tumor suppressor proteins as targets for new anticancer therapies as compared to the extensive research regarding those of oncogenes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.
    Full-text · Article · Dec 2015 · International Journal of Molecular Sciences
  • Source
    • "Thus, restoration of tumor suppressor gene function is considered as a rational approach for therapeutic intervention of carcinogenesis. For instance, the pharmacological activation of a tumor suppressor protein, p53, is being widely studied for the development of new cancer chemotherapeutics (22). Like many other tumor suppressor proteins, the expression of Tob1 is frequently lost in various cancers. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Transducer of ErbB-2.1 (Tob1), a tumor suppressor protein, is inactivated in a variety of cancers including stomach cancer. However, the role of Tob1 in gastric carcinogenesis remains elusive. The present study aimed to investigate whether Tob1 could inhibit gastric cancer progression in vitro, and to elucidate its underlying molecular mechanisms. We found differential expression of Tob1 in human gastric cancer (MKN28, AGS and MKN1) cells. The overexpression of Tob1 induced apoptosis in MKN28 and AGS cells, which was associated with sub-G1 arrest, activation of caspase-3, induction of Bax, inhibition of Bcl-2 and cleavage of poly (ADP-ribose) polymerase (PARP). In addition, Tob1 inhibited proliferation, migration and invasion, which were reversed in MKN1 and AGS cells transfected with Tob1 siRNA. Overexpression of Tob1 in MKN28 and AGS cells induced the expression of Smad4, leading to the increased expression and the promoter activity of p15, which was diminished by silencing of Tob1 using specific siRNA. Tob1 decreased the phosphorylation of Akt and glycogen synthase kinase-3β (GSK3β) in MKN28 and AGS cells, resulting in the reduced protein expression and the transcriptional activity of β‑catenin, which in turn decreased the expression of cyclin D1, cyclin-dependent kinase-4 (CDK4), urokinase plasminogen activator receptor (uPAR) and peroxisome proliferator and activator receptor-δ (PPARδ). Conversely, silencing of Tob1 induced the phosphorylation of Akt and GSK-3β, and increased the expression of β‑catenin and its target genes. Collectively, our study demonstrates that the overexpression of Tob1 inhibits gastric cancer progression by activating Smad4- and inhibiting β‑catenin-mediated signaling pathways.
    Full-text · Article · Jun 2012 · International Journal of Oncology
  • Source
    • "While some of these compounds directly interact with mutant p53 proteins and reestablish their functions via conformational effects (Athar et al, 2011; Selivanova, 2010; Wiman, 2010), others were designed to inhibit the p53-targeting ubiquitin ligase HDM2, leading to increased p53 concentrations (Shangary & Wang, 2009). Moreover, some agents kill p53-deficient cancer cells based on their increased tendency to undergo polyploidization . "
    [Show abstract] [Hide abstract]
    ABSTRACT: The genetic or functional inactivation of p53 is highly prevalent in human cancers. Using high-content videomicroscopy based on fluorescent TP53(+/+) and TP53(-/-) human colon carcinoma cells, we discovered that SP600125, a broad-spectrum serine/threonine kinase inhibitor, kills p53-deficient cells more efficiently than their p53-proficient counterparts, in vitro. Similar observations were obtained in vivo, in mice carrying p53-deficient and -proficient human xenografts. Such a preferential cytotoxicity could be attributed to the failure of p53-deficient cells to undergo cell cycle arrest in response to SP600125. TP53(-/-) (but not TP53(+/+) ) cells treated with SP600125 became polyploid upon mitotic abortion and progressively succumbed to mitochondrial apoptosis. The expression of an SP600125-resistant variant of the mitotic kinase MPS1 in TP53(-/-) cells reduced SP600125-induced polyploidization. Thus, by targeting MPS1, SP600125 triggers a polyploidization program that cannot be sustained by TP53(-/-) cells, resulting in the activation of mitotic catastrophe, an oncosuppressive mechanism for the eradication of mitosis-incompetent cells.
    Full-text · Article · Jun 2012 · EMBO Molecular Medicine
Show more