Postinduction Requirement of NMDA Receptor Activation for Late-Phase Long-Term Potentiation of Developing Retinotectal Synapses In Vivo

Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.34). 03/2011; 31(9):3328-35. DOI: 10.1523/JNEUROSCI.5936-10.2011
Source: PubMed


Spaced patterns of repetitive synaptic activation often result in a long-lasting, protein synthesis-dependent potentiation of synaptic transmission, known as late-phase long-term potentiation (L-LTP) that may serve as a substrate for long-term memory. Behavioral studies showed that posttraining blockade of NMDA subtype of the glutamate receptor (NMDAR) impaired long-term memory, although NMDAR activation is generally known to be required during LTP induction. In this study, we found that the establishment of L-LTP in vivo requires NMDAR activation within a critical time window after LTP induction. In the developing visual system of Xenopus laevis tadpole, L-LTP of retinotectal synapses could be induced by three episodes of theta burst stimulation (TBS) of the optic nerve with 5 min spacing ("spaced TBS"), but not by three TBS episodes applied en masse or spaced with intervals ≥10 min. Within a time window of ∼30 min after the spaced TBS, local perfusion of the tectum with NMDAR antagonist d-AP5 or Ca(2+)-chelator EGTA-AM impaired the establishment of L-LTP, indicating the requirement of postinduction activation of NMDAR/Ca(2+) signaling. Moreover, inhibiting spontaneous spiking activity in the tectum by local application of tetrodotoxin (TTX) prevented L-LTP when TTX was applied for 15 min immediately after the spaced TBS but not 1 h later, whereas the same postinduction TTX application in the retina had no effect. These findings offer new insights into the synaptic basis for the requirement of postlearning activation of NMDARs and point to the importance of postlearning spontaneous circuit activity in memory formation.

Download full-text


Available from: Xiao-hui Zhang
  • Source
    • "There are some precedents for examining the signaling requirements for late phases of LTP. In developing Xenopus retino-tectal synapses, perfusion with the NMDA receptor antagonist D-AP5 blocked a subsequent late phase of LTP when applied 0 –30 min (but not 60 min) after induction (Gong et al. 2011). A similar effect was seen with the voltagesensitive Na channel blocker TTX: late LTP was blocked when TTX was applied immediately after induction but not when applied 1 h later. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term synaptic depression (LTD) of cerebellar parallel fiber-Purkinje cell synapses is a form of use-dependent synaptic plasticity that may be studied in cell culture. One form of LTD is induced postsynaptically through an mGlu1/Ca influx/protein kinase Cα (PKCα) cascade, and its initial expression requires phosphorylation of ser-880 in the COOH-terminal PDZ-ligand region of GluA2 and consequent binding of PICK1. This triggers postsynaptic clathrin/dynamin-mediated endocytosis of GluA2-containing surface AMPA receptors. Cerebellar LTD also has a late phase beginning 45-60 min after induction that is blocked by transcription or translation inhibitors. Here, I have sought to determine the expression mechanism of this late phase of LTD by applying various drugs and peptides after the late phase has been established. Neither bath application of mGluR1 antagonists (JNJ-16259685, LY-456236) nor the PKC inhibitor GF-109203X starting 60-70 min after LTD induction attenuated the late phase. Similarly, achieving the whole cell configuration with a second pipette loaded with the peptide PKC inhibitor PKC(19-36) starting 60 min postinduction also failed to alter the late phase. Late internal perfusion with peptides designed to disrupt PICK1-GLUA2 interaction or PICK1 dimerization failed to impact late phase LTD expression. However, late internal perfusion with two different blockers of dynamin, the drug dynasore and a dynamin inhibitory peptide (QVPSRPNRAP), produced rapid and complete reversal of cerebellar LTD expression. These findings suggest that the protein synthesis-dependent late phase of LTD requires persistent dynamin-mediated endocytosis, but not persistent PICK1-GluA2 binding nor persistent activation of the upstream mGluR1/PKCα signaling cascade.
    Preview · Article · Nov 2011 · Journal of Neurophysiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neurons are exquisitely polarized cells that extend intricate axonal and dendritic arbors. Developmental cues guide axons and dendrites into circuits by inducing rapid changes in local protein expression and cytoskeletal structure. Neurons can transduce these signals through local mRNA regulation. Here, we review the latest insights regarding post-transcriptional control of gene expression through mRNA transport and local protein synthesis in developing neurons. We focus on local mRNA regulation during axon growth and guidance, dendrite morphogenesis, and synapse formation and refinement. Dysregulated mRNA transport and translation in neurological disorders are also discussed. The collection of molecules and mechanisms reviewed includes sequence-specific RNA binding proteins, microtubule motors and adaptors, microRNAs, translation initiation factors, and the receptor-mediated signaling that modulates these molecules.
    Full-text · Article · Apr 2011 · Current opinion in genetics & development
  • [Show abstract] [Hide abstract]
    ABSTRACT: The N-methyl-D-aspartate receptors (NMDARs) play a key role in synaptic plasticity, but it remains unclear whether the intrinsic-firing properties, another major determinant of the functional output of neurons, are regulated by activation of NMDARs. Here, we examine the effects of NMDAR activation on the intrinsic-firing properties of medium spiny neurons in nucleus accumbens in vitro. NMDAR activation by bath application of NMDA increased both the intrinsic excitability and the spike adaptation of these neurons. Furthermore, selective activation of NR2A-containing NMDARs mediated the enhancement of spike adaptation, whereas selective activation of NR2B-containing NMDARs increased the intrinsic excitability, suggesting that NR2A-containing and NR2B-containing NMDARs play different roles in mediating the intrinsic-firing properties of neurons.
    No preview · Article · Aug 2011 · Neuroreport
Show more