Viral infection and neural stem/progenitor cell's fate: Implications in brain development and neurological disorders

National Brain Research Centre, Manesar, Haryana, India.
Neurochemistry International (Impact Factor: 3.09). 02/2011; 59(3):357-66. DOI: 10.1016/j.neuint.2011.02.020
Source: PubMed


Viral infections in the prenatal (during pregnancy) and perinatal period have been a common cause of brain malformation. Besides the immediate neurological dysfunctions, virus infections may critically affect CNS development culminating in long-term cognitive deficits. Most of these neurotropic viruses are most damaging at a critical stage of the host, when the brain is in a dynamic stage of development. The neuropathology can be attributed to the massive neuronal loss induced by the virus as well as lack of CNS repair owing to a deficit in the neural stem/progenitor cell (NSPC) pool or aberrant formation of new neurons from NSPCs. Being one of the mitotically active populations in the post natal brain, the NSPCs have emerged as the potential targets of neurotropic viruses. The NSPCs are self-renewing and multipotent cells residing in the neurogenic niches of the brain, and, therefore, hampering the developmental fate of these cells may adversely affect the overall neurogenesis pattern. A number of neurotropic viruses utilize NSPCs as their cellular reservoirs and often establish latent and persistent infection in them. Both HIV and Herpes virus infect NSPCs over long periods of time and reactivation of the virus may occur later in life. The virus infected NSPCs either undergoes cell cycle arrest or impaired neuronal or glial differentiation, all of which leads to impaired neurogenesis. The disturbances in neurogenesis and CNS development following neurotropic virus infections have direct implications in the viral pathogenesis and long-term neurobehavioral outcome in infected individuals.

Download full-text


Available from: Sulagna Das, Apr 21, 2015
  • Source
    • "Being a neurotropic virus, JEV targets mostly neurons and results in neuronal death through activation of pro-apoptotic pathway (Swarup et al. 2007). Several neurotropic viruses have been shown to either develop persistent infection in NSPCs or modulate their differentiation potential (Das and Basu 2011). Besides neurons, the mitotically active NSPC also act as potential target for JEV infection (Das and Basu 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese encephalitis virus (JEV) predominantly infects neurons and causes damage to the central nervous system (CNS). Neural stem/progenitor cells (NSPCs) constitute multi-potent stem cell population in postnatal/adult brain, with capacity to differentiate into neurons, astrocytes or oligodendrocytes. NSPCs are known to play a pivotal role in CNS repair mechanisms during various neurological disorders. Previous studies from our laboratory have shown that JEV infection of NSPCs depletes the stem-cell pool, which may result in impaired repair functions leading to motor and cognitive deficits in survivors. In the present study, we evaluated the effect of JEV infection on differentiation potential of NSPCs isolated from BALB/c mouse pups (Post natal day 7). Results clearly indicated that, JEV infection was more robust in undifferentiated NSPCs as compared to differentiated ones. Further, JEV infected NSPCs showed hampered differentiation and arrested migration in adherent neurosphere cultures. Interestingly, the neuronal differentiation appeared to be more severely affected by JEV as compared to astrocyte differentiation. The transcription factors involved in both neuronal and astrocyte differentiations were significantly decreased upon JEV infection. Overall, results presented in this study comprehensively provide first evidence for JEV induced alteration of neuronal and astrocyte differentiation. *Iqbal Mohamed Ariff and Menaka Chanu Thounaojam contributed equally as first authors
    Full-text · Article · Apr 2013 · Journal of Neuroimmune Pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the complex mechanisms by which infectious agents can disrupt behavior represents a major challenge. The Borna disease virus (BDV), a potential human pathogen, provides a unique model to study such mechanisms. Because BDV induces neurodegeneration in brain areas that are still undergoing maturation at the time of infection, we tested the hypothesis that BDV interferes with neurogenesis. We showed that human neural stem/progenitor cells are highly permissive to BDV, although infection does not alter their survival or undifferentiated phenotype. In contrast, upon the induction of differentiation, BDV is capable of severely impairing neurogenesis by interfering with the survival of newly generated neurons. Such impairment was specific to neurogenesis, since astrogliogenesis was unaltered. In conclusion, we demonstrate a new mechanism by which BDV might impair neural function and brain plasticity in infected individuals. These results may contribute to a better understanding of behavioral disorders associated with BDV infection.
    Full-text · Article · Dec 2011 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural precursor cells (NPCs) provide a cellular model to compare transduction efficiency and toxicity for a series of recombinant adeno-associated viruses (rAAVs). Results led to the choice of rAAV9 as a preferred candidate to transduce NPCs for in vivo transplantation. Importantly, transduction promoted a neuronal phenotype characterized by neurofilament M (NFM) with a concomitant decrease in the embryonic marker, nestin, without significant change in glial fibrillary acidic protein (GFAP). In marked contrast to recent studies for induced pluripotent stem cells (iPSCs), exposure to rAAVs is non-immunogenic and these do not result in genetic abnormalities, thus bolstering the earlier use of NPCs such as those isolated from E13 murine cells for clinical applications. Mechanisms of cellular interactions were explored by treatment with genistein, a pan-specific inhibitor of protein receptor tyrosine kinases (PRTKs) that blocked the transduction and differentiation, thus implying a central role for this pathway for inducing infectivity along with observed phenotypic changes and as a method for drug design. Implantation of transduced NPCs into adult mouse hippocampus survived up to 28 days producing a time line for targeting or migration to dentate gyrus and CA3-1 compatible with future clinical applications. Furthermore, a majority showed commitment to highly differentiated neuronal phenotypes. Lack of toxicity and immune response of rAAVs plus ability for expansion of NPCs in vitro auger well for their isolation and suggest potential therapeutic applications in repair or replacement of diseased neurons in neurodegeneration.
    No preview · Article · Feb 2012 · Neuroscience
Show more