Attenuated Vasodilatation in Lambs with Endogenous and Exogenous Activation of cGMP Signaling: Role of Protein Kinase G Nitration

Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
Journal of Cellular Physiology (Impact Factor: 3.84). 12/2011; 226(12):3104-13. DOI: 10.1002/jcp.22692
Source: PubMed


Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO(-) ) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO(-) donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24 h (with exogenous activation of cGMP) revealed increased ONOO(-) levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO(-) and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity.

7 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital heart diseases associated with increased pulmonary blood flow commonly leads to the development of pulmonary hypertension. However, most patients who undergo histological evaluation have advanced pulmonary hypertension, and therefore it has been difficult to investigate aberrations in signaling cascades that precede the development of overt vascular remodeling. This review discusses the role played by both oxidative and nitrosative stress in the lung and their impact on the signaling pathways that regulate vasodilation, vessel growth, and vascular remodeling in the neonatal lung exposed to increased pulmonary blood flow.
    No preview · Article · Oct 2010 · Trends in cardiovascular medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3',5' Cyclic guanosine monophosphate (cGMP)-dependent protein kinase G-1α (PKG-1α) is an enzyme that is a target of several anti-hypertensive and erectile dysfunction drugs. Binding of cGMP to PKG-1α produces a conformational change that leads to enzyme activation. Activated PKG-1α performs important roles both in blood vessel vasodilation and in maintaining the smooth muscle cell in a differentiated contractile state. Recombinant PKG-1α has been expressed and purified using Sf9-insect cells. However, attempts at purifying full length protein in a soluble and active form in prokaryotes have thus far been unsuccessful. These attempts have been hampered by the lack of proper eukaryotic protein folding machinery in bacteria. In this study, we report the successful expression and purification of PKG-1α using a genetically engineered Escherichia coli strain, Rosetta-gami 2(DE3), transduced with full-length human PKG-1α cDNA containing a C-terminal histidine tag. PKG-1α was purified to homogeneity using sequential nickel affinity chromatography, gel filtration and ion exchange MonoQ columns. Protein identity was confirmed by immunoblot analysis. N-terminal sequencing using Edman degradation demonstrated that the purified protein was full length. Analysis of enzyme kinetics, using a nonlinear regression curve, identified that, at constant cGMP levels (10μM) and varying ATP concentrations, PKG-1α had a maximal velocity (V(max)) of 5.02±0.25pmol/min/μg and a Michaelis-Menten constant (K(m)) of 11.78±2.68μM ATP. Recent studies have suggested that endothelial function can be attenuated by oxidative and/or nitrosative stress but the role of PKG-1α under these conditions is unclear. We found that PKG-1α enzyme activity was attenuated by exposure to the NO donor, spermine NONOate, hydrogen peroxide, and peroxynitrite but not by superoxide, suggesting that the attenuation of PKG-1α activity may be an under-appreciated mechanism underlying the development of endothelial dysfunction in a number of cardiovascular diseases.
    No preview · Article · May 2011 · Protein Expression and Purification
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary vascular disease can be defined as either a disease affecting the pulmonary capillaries and pulmonary arterioles, termed pulmonary arterial hypertension, or a disease affecting the left ventricle, called pulmonary venous hypertension. Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation characterized by endothelial dysfunction, as well as intimal and smooth muscle proliferation. Progressive increases in pulmonary vascular resistance and pressure impair the performance of the right ventricle, resulting in declining cardiac output, reduced exercise capacity, right-heart failure, and ultimately death. While the primary and heritable forms of the disease are thought to affect over 5000 patients in the United States, the disease can occur secondary to congenital heart disease, most advanced lung diseases, and many systemic diseases. Multiple studies implicate oxidative stress in the development of PAH. Further, this oxidative stress has been shown to be associated with alterations in reactive oxygen species (ROS), reactive nitrogen species (RNS), and nitric oxide (NO) signaling pathways, whereby bioavailable NO is decreased and ROS and RNS production are increased. Many canonical ROS and NO signaling pathways are simultaneously disrupted in PAH, with increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and xanthine oxidoreductase, uncoupling of endothelial NO synthase (eNOS), and reduction in mitochondrial number, as well as impaired mitochondrial function. Upstream dysregulation of ROS/NO redox homeostasis impairs vascular tone and contributes to the pathological activation of antiapoptotic and mitogenic pathways, leading to cell proliferation and obliteration of the vasculature. This paper will review the available data regarding the role of oxidative and nitrosative stress and endothelial dysfunction in the pathophysiology of pulmonary hypertension, and provide a description of targeted therapies for this disease.
    No preview · Article · Mar 2012 · Free Radical Biology and Medicine
Show more