ArticlePDF Available

A Review of Sexual Selection and Human Evolution: How Mate Choice shaped Human Nature



The application of sexual selection theory to human behavior has been the greatest success story in evolutionary psychology, and one of the most fruitful and fascinating developments in the human sciences over the last two decades. Ironically, this development would have seemed absurd only twenty years ago. At that time, many biologists considered sexual selection through mate choice to be Darwin's least successful idea: if not outright wrong, it was at most a minor, uninteresting, even pathological evolutionary process. At that time, any "Darwinization" of the human sciences would have had to rely on natural selection theory, which bears much less directly on human social, sexual, and cultural behavior. Instead, something remarkable happened: sexual selection theory was revived over the last two decades through the combined efforts of researchers in theoretical population genetics, experimental behavioral biology, primatology, evolutionary anthropology, and evolutionary psychology. Today, although natural selection theory serves as the conceptual and rhetorical foundation for evolutionary psychology (see Tooby & Cosmides, 1990, 1992), sexual selection theory seems to guide more actual day-to-day research (see Buss, 1994; Ridley, 1993; Wright, 1994). This chapter reviews the current state of sexual selection theory, and outlines some applications to understanding human behavior. Sexual selection theory has been revived so recently that, while extraordinary opportunities exist for further research, many old misconceptions persist. These include the mistaken ideas that sexual selection:(1) always produces sex differences,(2) does not operate in monogamous species,(3) is weaker than natural selection, and(4) had nothing to do with the evolution of human intelligence, language, or creativity. One goal of this chapter will be to dispel some of these myths, and to bring evolutionary psychology up to date with respect to the biological literature on sexual select
A Review of Sexual Selection and Human Evolution:
How Mate Choice shaped Human Nature
Published as:
Miller, G. F. (1998). How mate choice shaped human nature: A review of sexual
selection and human evolution. In C. Crawford & D. Krebs (Eds.), Handbook of
evolutionary psychology: Ideas, issues, and applications (pp. 87-130). Lawrence
Geoffrey F. Miller
ESRC Research Centre for
Economic Learning and Social Evolution (ELSE)
University College London
Gower St., London WC1E 6BT, England
Running Head: How mate choice shaped human nature
1 Introduction
The application of sexual selection theory to human behavior has been the greatest
success story in evolutionary psychology, and one of the most fruitful and fascinating
developments in the human sciences over the last two decades. Ironically, this
development would have seemed absurd only twenty years ago. At that time, many
biologists considered sexual selection through mate choice to be Darwin's least
successful idea: if not outright wrong, it was at most a minor, uninteresting, even
pathological evolutionary process. At that time, any `Darwinization' of the human
sciences would have had to rely on natural selection theory, which bears much less
directly on human social, sexual, and cultural behavior.
Instead, something remarkable happened: sexual selection theory was revived over the
last two decades through the combined efforts of researchers in theoretical population
genetics, experimental behavioral biology, primatology, evolutionary anthropology, and
evolutionary psychology. Today, although natural selection theory serves as the
conceptual and rhetorical foundation for evolutionary psychology (see Tooby &
Cosmides, 1990, 1992), sexual selection theory seems to guide more actual day-to-day
research (see Buss, 1994; Ridley, 1993; Wright, 1994).
This chapter reviews the current state of sexual selection theory, and outlines some
applications to understanding human behavior. Sexual selection theory has been
revived so recently that, while extraordinary opportunities exist for further research,
many old misconceptions persist. These include the mistaken ideas that sexual
How mate choice shaped human nature
selection: (1) always produces sex differences, (2) does not operate in monogamous
species, (3) is weaker than natural selection, and (4) had nothing to do with the evolution
of human intelligence, language, or creativity. One goal of this chapter will be to dispel
some of these myths, and to bring evolutionary psychology up to date with respect to the
biological literature on sexual selection. Sections 2 through 4 review the history and
basic theory of sexual selection. Sections 5 and 6 contextualize human mate choice by
covering sexual selection in primates and hominids. Sections 7 through 9 survey some
possible roles of mate choice in shaping the human body, the human mind, and human
culture. Finally, section 10 concludes with some academic and existential implications of
applying sexual selection theory to understand human nature.
2 History of sexual selection theory
Darwin (1859, 1871) realized that his theory of natural selection through differential
survival could not explain extravagant male traits such as the peacock's tail, because
such traits actually decrease survival ability. Rather, he reasoned that in a sexually-
reproducing species, any heritable traits that help in competing for sexual mates will tend
to spread through the species, even if they compromise survival somewhat. This
process of sexual selection may favor, for example, better sensory and motor abilities for
finding mates, gifts and ornaments to attract them, weapons and bluffs for repelling
same-sex competitors, endurance for lasting through the breeding season, and genitals
and gametes that maximize fertilization rates. Within the sexual selection process,
Darwin distinguished between male competition for female mates (which typically gives
rise to weapons), and female choice of male mates (which typically gives rise to gifts and
ornaments). But he recognized that female choice and male competition are often two
sides of the same coin, because mate choice by one sex usually implies competition by
the other sex, either through direct `interference competition' (e.g. physical fights over
the opposite sex) or through indirect `exploitation competition' (e.g. scrambles to find and
seduce the opposite sex before someone else does). Darwin had no real explanation of
why males usually compete harder for mates than females do — why males court, and
females choose —though he offered a staggering amount of evidence that this pattern
holds from insects through humans (Darwin, 1871).
Sexual selection was a radical idea for several reasons. First, it was a truly novel
concept. Whereas the theory of natural selection had been anticipated by many 18th
and 19th century thinkers such as Jean-Baptiste de Lamarck, Etienne Geoffroy Saint-
Hilaire, Frederic Cuvier, Thomas Malthus, and Robert Chambers (see Richards, 1987),
and was co-discovered by Alfred Russell Wallace (1870, 1889),the notion that mate
choice could shape organic form was without scientific precedent. Second, sexual
selection embodied Darwin's conviction that evolution was a matter of differential
reproduction rather than differential survival. Animals expend their very lives in the
pursuit of mates, against all the expectations of natural theology. Finally, Darwin
recognized that the agents of sexual selection are literally the brains and bodies of
sexual rivals and potential mates, rather than the insensate features of a physical habitat
or a biological econiche. Psychology haunts biology with the spectre of half-sentient
mate choice shaping the otherwise blind course of evolution (see Miller, 1994; Miller &
Todd, 1995). For Darwin, the choice of mates by female animals was no different in kind
from artificial selection by human breeders:
"All animals present individual differences, and as man can modify his
domesticated birds by selecting the individuals which appear to him the most
beautiful, so the habitual or even occasional preference by the female of the
more attractive males would almost certainly lead to their modification; and such
modification might in the course of time be augmented to almost any extent,
compatible with the existence of the species." (Darwin, 1871, p. 750-751).
Because female animals exercised most mate choice, and sexual selection through
mate choice came very close to creative, conscious artificial selection by humans,
Darwin's ideas put females in a very powerful evolutionary role —a role that made most
(male) Victorian biologists deeply uncomfortable. Thus, male competition was widely
accepted by Darwin's peers as an important, necessary, and general evolutionary
process, but the possibility of female choice driving evolution was almost universally
mocked and dismissed (Cronin, 1991).
For example, even Alfred Russell Wallace, the co-discoverer of natural selection
(Wallace, 1870), was deeply skeptical about sexual selection through female choice.
He doubted that the perceptual systems of female animals could shape male courtship
ornaments, and viewed such ornaments as arising from a simple male "surplus of
strength, vitality, and growth-power which is able to expend itself in this way without
injury" (Wallace, 1889, p. 293). Wallace's skepticism is strange because his insightful
analyses of camouflage, mimicry, and warning coloration all presupposed a form of
`perceptual selection' by female (and male) predators hunting prey (see Wallace, 1870,
1889). If female predators could shape the evolution of bright warning colors in their
prey, why couldn't they shape the evolution of bright courtship colors in their males?
Even now, we hear echoes of Wallace's fallacious surplus-of-energy argument in most
psychological and anthropological theories about the `self-expressive' functions of
human art, music, language, and culture. After Darwin (1871), sexual selection received
such a frosty reception from Wallace and others that it was virtually forgotten (Mayr,
1972; Cronin, 1991). The Modern Synthesis of Mendelian genetics and Darwinism in
the 1930s viewed male competition as a sub-class of natural selection, while continuing
to reject female choice. Sexual ornaments were assumed to intimidate other males, or
were `species recognition markers' to help animals avoid cross-species mating (e.g.
Huxley, 1938; Cott, 1940). Sexual selection remained hidden in biology's blind spot for
many decades. The reasons are clear in retrospect. Sexual selection is hard to analyze
mathematically. Behaviorist psychology ignored evolution, denied instincts, and
disregarded the ecological validity of psychology experiments, so was not prone to
doing realistic experiments on mate choice. A fallacious form of group-selectionism
viewed costly courtship ornaments as `bad for the species' and therefore implausible.
Freud's vain attempt to leapfrog past Darwin without really understanding sexual
selection (see Sulloway, 1979) led to psychoanalysis supplanting evolutionary biology as
the early 20th century's leading account of human sexuality. Not least, persistent sexism
in biology denied the power of female choice until the 1970s (see Miller, 1993).
However, during sexual selection's long exile from biology, it was sometimes adopted by
early evolutionary psychologists such as Edward Westermark (1894) and Havelock Ellis
(1905, 1934), who used it to explain many aspects of the human body and mind.
R. A. Fisher (1915, 1930) was one of the few biologists to take sexual selection
seriously. He viewed mate preferences as legitimate biological traits subject to heritable
variation, and this insight led him to postulate a process he called runaway sexual
selection.. In runaway, an evolutionary positive-feedback loop gets established between
female preferences for certain male traits, and the male traits themselves. Given a
nudge in the right direction (e.g. an initial bias in female preferences), Fisher's model
How mate choice shaped human nature
could account for the wildly exaggerated male traits seen in many species, such as the
peacock's plumage (details follow in section 3.3). But Fisher did not explain the
evolutionary origins of female preferences themselves, nor did he develop formal genetic
models of runaway sexual selection. Huxley's (1938) hostile, deeply confused critique of
Fisher's theory and of sexual selection in general consigned the field to continued
neglect until the 1970s.
Sexual selection's revival has been swift, dramatic, and unique: Darwin's idea is, to my
knowledge, the only major scientific theory ever to have been accepted after a century of
condemnation. A centenary volume on sexual selection (B. Campbell, 1972) drew some
attention to Darwin's neglected ideas. Trivers (1972) finally explained why males court
and females choose, when he pointed out that the higher levels of necessary `parental
investment' by females of most species make females a limiting resource over which
males must compete: sex differences in parental investment drive sex differences in the
intensity of sexual selection. Zahavi (1975) set off intense debate with his `handicap
principle', suggesting that the extravagance and costliness of many sexual ornaments
function to guarantee their reliability as displays of genetic quality (e.g. only healthy
peacocks can afford to grow such huge, handicapping tails.) The debate over
sociobiology (Wilson, 1975) attracted interest in the evolution of social and sexual
behavior. The new population genetics models of O'Donald (1980), Lande (1981), and
Kirkpatrick (1982) showed the mathematical feasibility of Fisher's runaway sexual
selection process. New behavioral experiments on animals showed that females of
many species do exhibit strong preferences for certain male traits (e.g. Andersson, 1982;
Catchpole, 1980; Moller, 1988; Ryan, 1985). Important edited volumes appeared on
sexual selection theory (Bateson, 1983; Bradbury & Andersson, 1987), and on sexual
selection in insects (Blum & Blum, 1979) and humans (Betzig, Borgerhoff Mulder, &
Turke, 1987). Eberhard (1985) argued that the only feasible explanation for the wildly
complex and diverse male genitalia of many species is female choice for certain kinds of
genital stimulation. Finally, primatologists began to appreciate the role of sexual
selection in primate social systems (e.g. De Waal, 1982; Dunbar, 1988; Smuts, 1985;
Byrne & Whiten, 1988), and Symons (1979) applied sexual selection theory to humans
more thoroughly than ever before. Once biologists started taking the possibility of
female choice seriously, evidence for its existence and significance came quickly and
ubiquitously (see Andersson, 1994; Cronin, 1991).
Currently, sexual selection is one of the fastest-growing and most exciting areas of
evolutionary biology and animal behavior. Recent biological work permeates the
journals American Naturalist, Animal Behavior, Behavioral Ecology and Sociobiology,
Evolution, Heredity, Journal of Theoretical Biology, Nature, and Science. Research on
sexual selection in humans appears most often in the journals Behavioral and Brain
Sciences, Ethology and Sociobiology, Human Nature, and Psychological Review. The
best recent theoretical and empirical review of sexual selection is Andersson (1994); the
best historical review is Cronin (1991). Darwin's (1871) foundational work The Descent
of Man, and Selection in Relation to Sex still rewards careful and repeated reading.
Accessible introductions to sexual selection in humans include Batten (1992), Buss
(1994), H. Fisher (1992), Daly and Wilson (1988), Ridley (1993), and Wright (1994).
It is important to understand the peculiar history of sexual selection theory because
virtually all of 20th century psychology, anthropology, paleontology, primatology, and
cognitive science, as well as the social sciences and humanities, developed without
recognizing that sexual selection could have played any important role in the evolution of
the human body, the human mind, human behavior, or human culture. Since biologists
have embraced sexual selection, we must face the possibility that most current theories
of human behavior and culture are inadequate, because they may have vastly under-
estimated the role of sexual competition, courtship, and mate choice in human affairs.
3 Mate choice criteria and sexual selection mechanisms
The simplest way to review the current state of sexual selection theory is to explore the
different kinds of criteria that animals can use to choose mates. This is because we can
often view sexual competition within each sex as an outcome of mate choice by the
other sex — if "choice" is understood broadly to include processes both conscious and
unconscious, and both psychological and physiological. Recently, there have been two
major schools of thought about mate choice criteria. Champions of Zahavi's (1975)
handicap principle have emphasized selection for genetic indicators  also called "good
genes", "good sense", or "healthy-offspring" selection. Champions of R. A. Fisher's
(1930) runaway process have emphasized selection for aesthetic displays  also called
"good taste" or "sexy son" selection. In evolutionary biology, these different mate choice
criteria are often considered competing models of how sexual selection works, but there
is now sufficient evidence for each (see Andersson, 1994) that they can be considered
well-established, often complementary selective forces. Of course, mate choice can
favor many other important qualities, including parental ability and resources (see
Clutton-Brock, 1991; Hoelzer, 1989; Price, Schluter, & Heckman, 1993), fertility (e.g.
sperm quality in males or fecundity in females — see Baker & Bellis, 1995; Singh, 1993),
optimal genetic distance (to avoid inbreeding with close relatives or outbreeding with the
wrong species — see N. Thornhill, 1991, 1993), and similarity in appearance, behavior,
and personality (see Buss, 1985; Rushton, 1989; Thiessen & Gregg 1980). But before
discussing these various classes of mate choice mechanisms, we must understand their
3.1 The origins of mate preferences
Mate choice is the behavioral outcome of mate preferences. These preferences are
usually "mental adaptations" implemented as complex neural circuits, and constructed
through the interaction of many genes and environmental conditions, which bias mating
in favor of individuals with certain perceivable traits. In most species, such systems may
function without conscious awareness, deliberation, or complex aesthetic feelings; but
we might expect mate choice to be among the least unconscious of an animal's
decisions, because it requires the integration of such diverse information, and has such
important fitness consequences. Mate choice operates by rejecting some potential
mates and accepting or soliciting to others. In almost all species, females can effectively
resist copulation attempts by unwanted males, and in many species, females actively
solicit copulations from desired males. Likewise, males actively pursue desired females,
and ignore solicitation attempts by unwanted females. Although sexual harassment of
females is common in nature, `successful' rape seems fairly rare, being reported in only
a small collection of species such as ducks, squid, dolphins, orangutans, and humans
(Brownmiller, 1975; Rodman & Mitani, 1987; R. Thornhill & N. Thornhill, 1992).
Generally, mutual choice and mutual cooperation are necessary for breeding.
How mate choice shaped human nature
Why do these mechanisms for mate choice evolve? Being choosy requires time,
energy, and intelligence, and these costs of mate choice can impair survival and can
decrease the likelihood of sexual selection operating at all (Pomiankowski, 1987;
Reynolds & Gross, 1990). The basic rationale is that random mating is stupid mating. It
pays to be choosy because in a sexually reproducing species, the genetic quality of your
mate will determine half the genetic quality of your offspring. Ugly, unhealthy mates yield
ugly, unhealthy offspring. By forming a joint genetic venture with an attractive, high-
quality mate, one's genes are much more likely to be passed on. Even modern women
who deny the "role of genes in human behavior" tend to choose their sperm donors quite
carefully (see Scheib, 994). Mate choice is simply the best eugenics and genetic
screening that female animals are capable of carrying out under field conditions, with no
equipment but their senses and their brains.
Mate choice mechanisms can evolve through direct selection for mate-choice efficiency
(i.e. better preferences lead to more or better offspring), and through three other less
predictable, less adaptive processes: (1) mutation, (2) genetic drift, and(3) genetic
linkage with another trait that is undergoing genetic drift, natural selection, or sexual
selection. These last three processes will typically produce harmful changes in mate
choice mechanisms, so will usually be selected out. But some changes will persist,
through chance, utility, or Fisher's runaway effect. The unpredictability of these three
processes is important in explaining the diversity of sexually-selected ornaments across
similar, closely-related species (Eberhard, 1985; Miller & Todd, 1995).
The following sections review some of the major kinds of mate choice and sexual
selection. But in addition to the mate choice criteria discussed below, most animals also
have mechanisms to ensure that they mate with partners of the appropriate species,
sex, age, and genetic distance, at an appropriate place and time (see Bateson, 1983;
Andersson, 1994).
3.2 Selection for indicators
Probably the most fundamental form of sexual selection is mate choice for various
"indicators" of viability (likelihood of survival) and fertility (likelihood of reproduction).
These can take many forms. Almost any perceivable bodily or behavioral trait can
function as an indicator — revealing age, health, nutritional status, size, strength,
aggressive dominance, social status, disease resistance, or overall vigor. Such
indicators may reveal both heritable genetic traits that would be passed on to offspring
(selection for `good genes'), and chances that the mate will survive to give provisioning,
protection, and support to offspring (selection for `good parents').
No one is surprised when animals avoid mating with the dead, the injured, or the sick.
All such mating decisions must rely on observable cues of viability. The idea of
indicators is that the cues used in such assessments will tend to be exaggerated over
eons of mate choice. Weak, ambiguous, unreliable, incidental cues of being non-dead
and non-sick will become strong, clear, reliable, specially-adapted indicators of being
vigorous and healthy. For example, dead peacocks have rather drab tails. And
peacocks with inferior tails get eaten more often by predators (Petrie, 1992). So tail
quality probably reflects some underlying physiological quality that correlates with
predator-escape ability, and that could be inherited by offspring. This gives an incentive
for peahens to choose males for tale quality, and for peacocks to display large, healthy
tails as vigorously as possible (Petrie, Halliday, & Sanders, 1991). Other classic
examples of indicators include color and condition of bird plumage in other species
(Hamilton & Zuk, 1982; Moller, 1988), loudness and complexity of bird song (Catchpole,
1980, 1987), antler size and symmetry (e.g. Goss, 1983), and raw body size (Ryan,
985). But almost any body part or behavior that is expensive to produce and that varies
in magnitude can serve as an indicator.
The importance of indicators in sexual selection has been emphasized by R. A. Fisher
(1915), Williams (1966), and Zahavi (1975). Indicators, like animal signals in general,
are subject to the handicap principle: the game-theoretic constraint that they must be
costly in order to be reliable because if not, they can be faked too easily (Zahavi, 1975,
1991). Indicators evolve most easily when they are `condition-dependent', such that
healthier animals grow bigger or better indicators (e. g. larger, more colorful tails) or
`revealing', such that healthier animals take better care or make better use of the
indicators they have (e.g. the tails are better-groomed and better-displayed).
Despite initial skepticism about the handicap principle, computer simulations and
mathematical models have helped to convince most biologists that condition-dependent
and revealing indicators are common outcomes of sexual selection. For example,
simulations by Andersson (1986) showed that condition-dependent indicators could
evolve even in perfectly monogamous species, given viability differences of only a few
percent. An important mathematical analysis by Iwasa, Pomiankowski, and Nee (1991)
confirms that indicators can evolve under sexual selection even if mate preferences are
costly, as long as mutations are usually harmful. Other, more recent models suggest
that `good parenting' indicators can evolve to display even non-heritable resources such
as good territories (Grafen, 1990; Heywood, 1989; Hoelzer, 1989; Price et al., 1993).
Thus, not all indicators are necessarily advertising genetic quality; they could simply be
advertising resources and health relevant to raising offspring. Indicators often evolve
better when runaway sexual selection is also operating on the relevant traits and
preferences (Andersson, 1986; Heywood, 1989; Pomiankowski, 1988; Tomlinson, 1988).
However, indicators alone, even without the runaway process, can suffice for the
evolution of extravagant male ornaments and extreme female preferences (Grafen,
1990). See Andersson (1994, chapter 3) for a comprehensive review of indicator models
and data.
The idea of genetic indicators has been criticized because of the `lek paradox' (e.g.
Williams, 1975; Maynard Smith, 1976; Kirkpatrick, 1987; Pomiankowski, 1987, 1995;
Reynolds & Gross, 1990). Leks are aggregations of animals such as sage grouse,
where females pick their mates very carefully from among dozens of males displaying in
large groups, and females receive nothing but sperm from the males they choose. The
most attractive male sage grouse may achieve over 30 matings in a single morning,
while average males usually win none (Boyce, 1990). Under such intense selection for
attractive traits, we might expect the preferred traits to go to fixation (100% frequency) in
the gene pool very quickly (R. A. Fisher, 1930). Once fixated, there would be no further
incentive for females to be choosy, because all of the males should have the same
genes and hence be equally attractive. Indicators would become irrelevant once the
population became genetically homogenous, without any heritable variation in fitness or
However, three processes can maintain heritable fitness variation: temporal variation in
selection, spatial variation in selection, and mutation pressure (see Andersson, 1994).
How mate choice shaped human nature
Temporally varying selection can result from co-evolution between ecological
competitors, between predators and prey, or, perhaps most importantly, between hosts
and parasites (Hamilton & Zuk, 1982; Hamilton, Axelrod, & Tanese, 1990; Low, 1990).
Spatially varying selection in different geographic areas, combined with migration, can
maintain heritable variation in a population. Mutation pressure can also maintain
heritable fitness variation because most mutations are harmful, and give rise to an
excess of low-fitness individuals (Lande, 1981; Charlesworth, 1987; Kondrashov, 1988;
Rice, 1988). Indeed, genetic models show that indicators evolve more easily under
biased mutation (Iwasa et al., 1991). Some recent studies even suggest that sexually-
selected traits have much higher heritabilities and genetic variances than naturally-
selected traits, despite strong directional selection (Moller & Pomiankowski, 1993;
Pomiankowski, 1995; Wilcockson, Crean, & Day, 1995). The importance of heritable
fitness variation is also confirmed by experiments in which females that are allowed to
choose their mates have offspring with higher phenotypic (and, by inference, genetic)
quality than females not allowed to choose (e.g. Partridge, 1980; Reynolds & Gross,
1992). Through female choice, males have been forced to evolve clear windows onto
the quality of their genes, so that females can weed out the bad ones. In this sense,
females shape males to function as a kind of genetic sieve for the species (Atmar, 1991;
Michod & Levin, 1988): out with the bad genes, in with the good.
3.3 Selection for aesthetic displays
Some traits have been shaped as aesthetic displays, sometimes in addition to
functioning as indicators. Aesthetic displays play upon the perceptual biases of
receivers to attract attention, provoke excitement, and increase willingness to mate.
That is, seducers manipulate perceptions. The perceptual biases open to manipulation
can arise in two, often complementary, ways: (1) they may already exist as `latent
preferences' — side-effects of previous evolutionary processes, reflecting basic
psychophysical effects, general principles of perception, or perceptual adaptations to
particular environments — and (2) they may co-evolve with the courtship traits they
prefer, through Fisher's runaway process.
Several species have been shown to have `latent preferences' for particular ornaments,
even though the ornaments have not yet evolved in the species. Burley (1988) showed
that female zebra finches prefer males whose legs have been experimentally decorated
with red or black plastic bands, but males with blue and green bands were rejected.
Basolo (1990) showed that female platyfish prefer males with colorful plastic `swords'
glued on the ends of their tails, suggesting that this preference also pre-dated the
evolution of such ornaments in their close relatives the swordtails. Ryan (1985, 1990)
found that females frogs of some species prefer the courtship calls (deep "chuck"
sounds) of male frogs if they are played back at artificially lowered frequencies, as if
produced by extra-large frogs. Ridley (1981) suggested that tails with multiple eye-
spots, such as those of the peacock and the Argus pheasant, play upon a widespread
responsiveness to eye-like stimuli in animal perception.
In response to such findings, several theorists have emphasized the role of perceptual
biases in sexual selection, using terms such as `sensory drive' (Endler, 1992, 1993),
`sensory trap' (West-Eberhard, 1984), `sensory exploitation'(Eberhard,1985; Ryan,
1990; Ryan & Keddy-Hector, 1992), `signal selection' (Zahavi, 1991), and `the influence
of receiver psychology on the evolution of animal signals' (Guilford & M. S. Dawkins,
1991; see also Enquist & Arak, 1993). As any perceptual psychologist might predict,
animals typically prefer displays that are louder, larger, more colorful, more frequent,
more varied, and more novel than average (Ryan & Keddy-Hector, 1990; Miller, 1993).
But such perceptual biases may also vary substantially across species, in accord with
ecological specializations of the perceptual systems. For example, birds that eat blue
berries may evolve blue-sensitive eyes, which would tend to favor blue ornaments;
whereas birds that eat red berries may evolve red-sensitive eyes that favor red
ornaments. These perceptual specializations may help explain the rapid divergence of
sexually-selected traits across closely-related species (Endler,1992, 1993). The
effectiveness of aesthetic displays in courtship supports the R. Dawkins and Krebs
(1978) theory that animal signals often evolve to manipulate receivers in the signaller's
interest, not to communicate truthful information (as indicators do) for the benefit of both.
But latent preferences are not necessary, according to R. A. Fisher's (1930) runaway
theory. Even chance fluctuations in mate preferences, combined with a strange kind of
evolutionary positive-feedback loop, could produce quite extreme mate preferences and
quite exaggerated courtship traits (see Miller & Todd, 1993; Todd & Miller, 1993).
Suppose that mate preferences vary somewhat randomly within a bird population, so
that in one particular generation, some females happen to prefer long tails on males,
while others don't care. Suppose male tail length also varies randomly. Could the
preference (for long tails) and the trait (of having a long tail) evolve together in a positive-
feedback loop? This possibility was first considered and dismissed by T. H. Morgan
(1903) to ridicule Darwin's sexual selection theory:
"Shall we assume that ... those females whose taste has soared a little higher
than that of the average (a variation of this sort having appeared) select males to
correspond, and thus the two continue heaping up the ornaments on one side
and the appreciation of the ornaments on the other side? No doubt an
interesting fiction could be built up along these lines, but would anyone believe it,
and if he did, could he prove it?"
R. A. Fisher (1930) believed it, but couldn't prove it:
"The two characteristics affected by such a process, namely plumage
development in the male and sexual preference in the female, must thus
advance together, and so long as the process is unchecked by severe
counterselection, will advance with ever-increasing speed."
Recent population genetics models (e.g. Lande, 1981; Kirkpatrick, 1982; Pomiankowski,
Iwasa, & Nee, 1991) have finally proved it:
"Females that prefer to mate with long-tailed males will mate with such males
more often than females that prefer short-tailed males. Following mating and
genetic recombination, the genes for long-tail preference and the genes for the
long tail itself will become correlated: an individual carrying a gene for long tails
will tend to carry a gene for the corresponding preference."(Kirkpatrick,1987, pp.
The argument looks a bit circular, but then all positive-feedback processes look a bit
circular. The only thing keeping runaway going is the `momentum' conferred by genetic
linkage and the risk to individuals of failing to display exaggerated traits or choosy
How mate choice shaped human nature
preferences given that momentum. The peacock's tail grows longer and longer because
of a despotic treadmill of fashion: "Each peahen is on a treadmill and dare not jump off
lest she condemn her sons to celibacy" (Ridley, 1993, p. 135). The treadmill doesn't go
on forever though: eventually, runaway would be counter-acted by the survival costs of
elaborate ornaments (R. A. Fisher,1930). At evolutionary equilibrium, the survival costs
of an ornament should balance the reproductive advantages (Kirkpatrick, 1982).
Runaway can happen in any sensory modality. Animals' eyes respond to color and form
on tails and faces; ears respond to loud complex songs by birds and whales; noses
respond to intense pheromones such as musk deer scent; skin responds to grooming,
foreplay, and genital stimulation. Electric fish may even respond to galvanic courtship
(Kramer, 1990). But there is much more to animal cognition than low-level sensation, so
courtship behaviors may have evolved to play on higher-level mental processes of
categorization, symbolism, memory, expectation, communication, and curiosity (Miller,
Runaway is a fairly robust and pervasive force that emerges even in genetic models of
indicators (Pomiankowski et al., 1991; Kirkpatrick, 1992), but it also a highly stochastic
process, quite sensitive to initial conditions and therefore capable of explaining the
capricious divergence of sexual ornamentation observed across species (Eberhard,
1985; Miller & Todd, 1993, 1995). The three basic assumptions of Fisher's model have
been moderately well-supported by recent empirical work (see Andersson, 1994): (1)
individuals with large sexual ornaments have higher mating success but lower survival
than those with smaller ornaments (all else being equal), (2) the relevant traits and
preferences show heritable genetic variation, and (3) there is genetic linkage between
the relevant traits and preferences (e.g. Bakker, 1993; Houde & Endler, 1990). The
runaway process is also supported by findings that some animals copy each others'
mate choices, as if following an arbitrary fashion rather than a reliable indicator
(Balmford, 1991; Dugatkin, 1992; Pruett-Jones, 1992).
3.4 Selection for sperm competition
Sexual selection does not stop when copulation begins. Indeed, gonads and genitals
are the clearest expressions of sexual selection, because they are most directly
responsible for fertilization, and they typically serve no survival functions. The traditional
view that `primary sexual characters' such as penises are "necessary for breeding and
hence are favored by natural selection" (Andersson, 1994, p. 14) is misleading. If sexual
competition and mate choice can affect genitals, then genitals can be shaped by sexual
In many species, females mate with more than one male, so sperm competition
becomes important: males evolve larger testicles, larger ejaculates, faster-swimming
sperm, various devices to remove previous competitors' sperm from the female
reproductive tract, and various plugs to keep future competitors' sperm excluded entirely
(Smith, 1984; G. Parker, 1984). The results can be dramatic: the male North Atlantic
right whale reputedly has 2000-pound testicles to pump out gallons of semen and
billions of sperm per ejaculate.
In primates, testicle size increases with intensity of sperm competition across species
(Harcourt & Harvey, 1984); female chimpanzees are highly promiscuous, so male
chimpanzees have evolved large 4-ounce testicles. Male humans have medium-sized
testicles by primate standards, and produce a respectable 400 million sperm per
ejaculate, suggesting that ancestral females had multiple lovers within a month fairly
often (Baker & Bellis, 1995).
Female choice does always not stop when copulation starts, either. Eberhard (1985)
has argued that male genitals often function as `internal courtship devices' to stimulate
females into accepting sperm from the copulating male. The length, variety, and vigor of
human copulation suggests that this type of internal courtship has been highly
elaborated in our species. Human female orgasm may function partially to suck sperm
into the uterus, thereby promoting fertilization by sexually exciting males (Baker & Bellis,
3.5 Selection for provisioning, territories, and protection
Females can gain nongenetic benefits from mate choice by favoring males that offer
material gifts (Searcy, 1982). The main examples of such provisioning come from male
insects giving nuptial gifts such as spermatophores or caught prey (see R. Thornhill &
Alcock, 1983), male birds provisioning offspring and building nests in socially
monogamous bird species (see Clutton-Brock, 1991), and sex-for-meat exchanges (e.g.
prostitution and marriage) in humans(H. Fisher, 1982, 1992). Male provisioning is
useful to females because it eases the nutritional and energetic burden of producing
eggs, gestating young, and feeding them. But male provisioning of females during
courtship is not common across species, and male provisioning of offspring after birth is
quite rare except in monogamous birds (Clutton-Brock, 1991). Often, male provisioning
may represent mating effort more than paternal effort, if females prefer males that have
provisioned previous offspring (Seyfarth, 1978; Smuts, 1985). Biologists may often
mistake the grudgingly generous step-father for the committed dad.
Selection for direct provisioning must not be confused with the more common pattern of
selection for good territories that happen to be defended by particular males.
Socioecologists have long recognized that female animals tend to distribute themselves
around their habitat to exploit the available food resources and protect themselves
against the local predators, and the males distribute themselves to exploit the available
females as reproductive resources (Davies, 1991; Dunbar, 1988). In such cases, males
often fight to exclude competitors from prime territories, and females prefer to mate with
males that hold prime territories. Such systems are called `resource defense polygyny',
because males that are successful at excluding other males from areas desired by
females will reap a disproportionately high number of offspring with multiple females.
Male territoriality can be viewed in two ways: as female choice in favor of sexy, healthy,
high-status, land-holding aristocrats, or as female acquiescence to a Machiavellian
protection racket, where violent, harassing males extort sex for access to food, and then
leave females with all the burdens of parenting.
Males can sometimes serve as convenient if unreliable protectors from predators or from
other males. Thus, mate choice in favor of protectors is especially favored in species
where females and/or infants are subject to strong predation risk or strong risk of
infanticide by rival males (see Hausfater & Hrdy, 1984). Again, the protection racket
metaphor may be apt: males extort sex in exchange for a commitment not to kill a
female's offspring, and a willingness to keep other males from killing them. Moreover,
How mate choice shaped human nature
much of what appears to be `protection' behavior by males may function as mate-
guarding to minimize sexual competition from rival males, and may not reflect female
choice. Biologists have recently begun taking a darker view of male provisioning,
territoriality, and protection behavior — a view surprisingly concordant with recent
feminist analyses of human patriarchy, prostitution, marriage, sexual exploitation, and
the economic oppression of women (see Brownmiller, 1975; Buss & Malamuth, in press;
Haraway, 1989; Lancaster, 1991; Smuts, 1991).
3.6 Summary of sexual selection modes
The scope of sexual selection through mate choice is rather broad: it can operate in
almost any animal species capable of making discriminations among potential mates
and in responding more positively towards some than towards others. Mechanisms that
cause selective mating can arise from several sources, both as adaptations in their own
right and as side-effects of other adaptations (e. g. as sensory biases). Once in place,
these mechanisms can influence the evolution of sexual ornamentation and courtship
behaviors. If the selected trait correlates with general viability as a conditional or
revealing handicap, and if genetic variance in viability is maintained somehow, e.g. by
biased mutation or coevolution, then Zahavi's handicap principle will work to elaborate
both trait and preference (Iwasa et al., 1991). Even if the selected trait is purely
ornamental and does not correlate with general viability, as long as genetic variance in
the trait is maintained, then Fisher's runaway process can elaborate both trait and
preference (Pomiankowski et al., 1991). Often, Zahavi's and Fisher's processes will be
mutually reinforcing, such that a trait is elaborated both as a viability indicator that
increases offspring survival rates and as an aesthetic ornament that increases offspring
attractiveness. For example, "a peacock's tail is, simultaneously, a testament to
naturally selected female preferences for eye-like objects, a runaway product of despotic
fashion among peahens, and a handicap that reveals its possessor's condition."
(Ridley,1993, pp.161-162). These processes can operate even in the face of substantial
natural selection to evolve costly male traits and costly female preferences. Sexual
selection will work in pseudo-monogamous and polygynous species through differential
mating success, and will work in truly monogamous species if animals mate assortatively
with respect to viability-indicators, or if animals that mate earlier have more offspring
(Darwin, 1871; Kirkpatrick, Price, & Arnold, 1990).
4 Sex differences and sexual selection
Sexual selection through mate choice would be expected to operate in any sexually-
reproducing lineage, regardless of whether there were distinct sexes such as males and
females. If hermaphrodites exercise mate choice, they can evolve sexual ornaments.
Thus, sexual selection does not necessarily require or produce sex differences.
However, in almost all sexually-reproducing lineages on earth, distinct sexes have
evolved, consisting of `males' that produce small gametes called sperm and `females'
that produce large gametes called eggs. Bateman (1948) and Trivers (1972) pointed out
that since females invest more matter and energy into producing each egg than males
invest in producing each sperm, eggs form more of a limiting resource for males than
sperm do for females. Thus, males should compete more intensively to fertilize eggs
than females do to acquire sperm, while females should be choosier than males. Males
compete for quantity of females, and females compete for quality of males. In short,
males court, and females choose (see Daly & Wilson, 1983; Reynolds & Harvey, 1994;
Trivers, 1985).
In female mammals the costs of internal fertilization, gestation, and long-term lactation
are especially high, leading to even more striking differences between male
competitiveness and female choosiness. For example, the minimum parental
investment by female humans under ancestral conditions would have been a harrowing
9-month pregnancy followed by at least three years of breast-feeding and baby-carrying
(Shostak, 1981); whereas the minimum paternal investment would have been a few
moments of copulation and a teaspoonful of semen (Symons, 1979). The result is an
enormous difference in maximum lifetime reproductive success. King Moulay Ismail the
Bloodthirsty, a medieval despot of Morocco, sired over 800 children by the women in his
harem, and the first emperor of China, around 3000 years ago, was reputed to have
sired even more through his much larger harem (Betzig, 1986). By contrast, the world
record for a woman is 69 children, many of which were triplets (Daly & Wilson, 1983).
Even under relatively egalitarian tribal conditions, some men can father several dozen
children by several different women, whereas no woman bears more than 10 or so
children (Chagnon, 1983).
Thus, a man's reproductive success generally increases with his number of sexual
partners (in the absence of contraception), whereas a woman reaches her reproductive
limit rather quickly as her number of sexual partners increases. This is because males
can opt out of parental investment in a way that women cannot — nature can't enforce
child support laws any better than modern governments. Of course, women under
ancestral conditions probably used abortion and infanticide to avoid maternal investment
during difficult times (see Hausfater & Hrdy, 1984), but they could not induce another
woman to bear a child for them. Maternal investment was obligatory in hominids;
paternal investment was not.
There are usually trade-offs between courtship effort and parental effort. Males usually
invest more in the former, and females more in the latter. In females, the marginal costs
of sexually-selected traits will be higher (because the demands of maternal investment
push females closer to their physiological limits), and their benefits will be lower
(because males are less choosy), so females often invest less time and energy in
growing and displaying such traits than males do. The result is sexual dimorphism: a
sex difference in the expression of the courtship or reproductive trait. The most ancient
and reproductively central sexual dimorphisms are usually qualitative: males have
testicles, whereas females have ova. More recently evolved courtship traits usually
retain only quantitative dimorphism: many male birds have longer, brighter feathers than
females, but females often retain some discreet ornamentation. Female mammals have
breasts, but males retain nipples. All the qualitative sexual dimorphisms started out as
quantitative ones.
Sexual dimorphism is a common but not necessary outcome of sexual selection. Two
major factors limit sexual dimorphism: the mutuality of mate choice, and `genetic
linkage' between the sexes. The effects of mutual choice are easy to understand: if
both males and females are somewhat choosy and somewhat competitive, as in many
monogamous species, then sexual selection will apply to males and females roughly
equally, and sexually selected ornaments and indicators will evolve to similar
magnitudes in each. Whenever males must invest time, effort, and energy in courtship,
How mate choice shaped human nature
they have incentives to be at least slightly choosy about which females they choose to
court — but male choice has been studied only rarely, and may have often been
overlooked. For example, Trail (1990) observed that in about a quarter of lek-breeding
birds (which provide the best opportunities for female choice), ornaments are equally
elaborate in males and females, suggesting that male choice was operating as well.
Also, whenever high-quality males are in short supply, females have an incentive to
compete with each other to attract and retain such males. Competition to retain the
paternal investment and protection of male partners will also lead to substantial variance
in the number of offspring raised to maturity by females; measuring variance in number
of offspring born would completely miss a major stage of female reproductive
competition, which occurs after birth (Dunbar, 1988; Miller, 1993). Males also vary less
in their lifetime reproductive success than in their day-by-day success, because male
success follows a typical life-history trajectory (adolescent frustration, young adult
violence, older adult coalition-building, and gradual senescence). Therefore, short-term
measures will over-estimate variance in male reproductive success and under-estimate
female variance (Dunbar, 1988). Thus, sexual selection often applies to both sexes, and
can drive the evolution of indicators and aesthetic displays in both sexes.
Especially under monogamy, mutual mate choice can yield strong sexual selection
without much sexual dimorphism. Sexual selection can work in monogamous species if
the sex ratio is skewed, if extra-pair copulations undermine the putative monogamy, or,
most importantly, if mates differ in genetic quality (Darwin, 1871; R. A. Fisher, 1930).
For example, if animals mate assortatively with respect to quality (e.g. the healthy marry
each other, leaving the unhealthy no option but to marry other unhealthies), then
indicators of genetic quality can still evolve under sexual selection (see Darwin, 1871).
Thus, traits that improve the ability to compete for mates will be favored even under strict
monogamy (Jones & Hunter, 1993; Kirkpatrick et al., 1990). Moreover, female
competition over mates will be stronger under monogamy, so females may evolve
ornaments as extravagant as those of males. Mate choice must also be somewhat
mutual in species that use interactive courtship displays (which ethologists used to call
`pair-bonding rituals'), such as coordinated dances, song duets, mutual sexual foreplay,
and conversations (Miller, 1993). Only the pure Fisherian runaway process is
undermined by monogamy, because it depends on some individuals obtaining a
disproportionate number of mates.
Genetic linkage between the sexes also constrains the evolution of sexual dimorphism.
Because males and females within a species grow from very similar genes and
developmental mechanisms, most traits are homologous (developmentally and
anatomically similar) across sexes, and the male trait cannot initially evolve separately
from the female trait. This constraint holds for any traits that still have quantitative rather
than qualitative sexual dimorphism. Sons will tend to inherit their mothers' mate
preferences, and daughters will tend to inherit their fathers' sexually-selected traits.
Darwin (1871) called this the "Law of Equal Inheritance": all else being equal, even if
only one sex is exercising selective mate choice, both the selected traits and the
selective preferences will tend to be expressed in both sexes. For example, if female
choice favored large penises over many generations in some species, the clitoris
(female homolog of the penis) would tend to enlarge along with the penis, assuming no
other selection operated on the clitoris.
Lande (1980, 1987) showed that this sort of genetic linkage between the sexes makes
the evolution of sexual dimorphism a very slow process. Typically, sexual dimorphism
evolves a few orders of magnitude slower than sexually-selected traits themselves do.
For example, Rogers and Mukherjee (1992) applied Lande's model to data on the cross-
sex heritability of human height and other body dimensions, and found that if female
choice alone were favoring tall males, and males were not selecting females for height,
sexual dimorphism in height would evolve around 65 times slower than height itself. That
is, female height would increase over 98% as fast as male height increases, purely as a
correlated response to selection on males. This argument also applies to sexually-
selected behavioral and mental traits: any female choice for some courtship capacity in
the male would be expected to produce a correlated response in the female. In an
extraordinary passage, Darwin revealed his belief in the importance of mate choice in
human mental evolution, and in the importance of genetic linkage between the sexes:
"It is fortunate that the law of equal transmission of characters to both sexes
prevails with mammals; otherwise it is probable that man would have become as
superior in mental endowment to woman, as the peacock is in ornamental
plumage to the peahen." (Darwin, 1871)
Now that we have reviewed sexual selection theory, we can explore how that theory
applies to primates, hominids, and modern humans.
5 Sexual selection in primates
To a first approximation, ecological circumstances determine mating patterns in
primates. Generally, the distribution of food determines the distribution of females, and
the distribution of females determines the distribution of males. When females must
forage on their own, males disperse to pair with the lone females, giving rise to
monogamy; this pattern is fairly rare in primates, being restricted to gibbons, some
lemurs, and some African and South American monkeys. When females can afford to
forage in small groups to protect each other against female competitors, predators
(Dunbar, 1988) and infanticide by strange males (Hrdy, 1979), a single male can exclude
other males from each female group, giving rise to the common `harem system' of
unimale polygyny, as in hamadryas baboons, colobus monkeys, some langurs, and
gorillas. Unimale polygyny usually imposes strong sexual selection for aggressiveness,
including male size, strength, and weaponry (e.g. large canine teeth), resulting in high
degrees of sexual dimorphism in body size and behavior. When females can forage in
larger groups (of more than 10 or so) males must usually form coalitions to exclude other
males from the female group, resulting in a complex system of multimale polygyny, as in
some baboons, macaques, ring-tailed lemurs, howler monkeys, and chimpanzees. In
multimale polygyny, males compete at several levels: female promiscuity leads to sperm
competition; female preferences for dominant males lead to status competition,
individual aggressiveness, and coalition-formation; and female preferences for nice
males lead males to groom females, protect their offspring, and guard them from other
males (see De Waal, 1989). Hominids and humans probably evolved in fairly large
groups under multimale polygyny, so we will focus here on sexual selection in large-
group primates.
Male primates fight more often and more intensely when estrus females are in their
group. These fights usually result in a linear dominance hierarchy among the males,
with high-ranking males usually obtaining more matings because they can chase lower-
ranking males away from estrus females (Silk, 1987). However, lower-ranking males
How mate choice shaped human nature
can use a number of alternative mating strategies, because females often prefer novel
males, long-term friends, and ex-dominant older males, to the currently dominant male
(Smuts, 1985, 1987). Sometimes, these alternative strategies are as successful as
achieving high dominance rank, though they may often be making the best of a bad
situation. Males can also form coalitions to take over groups, repel outside males,
achieve higher dominance rank within groups, and acquire estrus females (Smuts,
1987). Male primates often use different strategies at different ages, as their physical
and social powers wax and wane (Dunbar, 1988).
Given multi-male, multi-female primate groups, how does mate choice work? Female
primates can exercise choice by joining groups that contain favored males, initiating sex
with them during estrus, supporting them during conflicts, and developing long-term
social relationships with them. Females can reject disfavored males by refusing to
cooperate during copulation attempts, driving males away from the group, or leaving the
group. But female mate choice criteria remain obscure for most primate species. In
contrast to modern humans, female primates rarely favor males that can provide
resources or paternal care of offspring. The sporadic male care that is observed, such
as watching, carrying, and protecting infants, may represent mating effort rather than
paternal investment (Seyfarth, 1978; Smuts, 1985), because it is often performed by a
male unlikely to be the father of the infant, who is interesting in mating with the infant's
mother. Rather, the only consistent female preferences observed have been for (1)
high-ranking males capable of protecting females and offspring from other males, (2)
specific males with whom a special short-term consortship or long-term friendship has
been formed through mutual grooming and affiliation, and male food-giving and infant
protection, and(3) new males from outside the group, to avoid inbreeding and protect
against the infanticide they might commit if they knew that none of the local offspring
were theirs. Clearly, these criteria conflict somewhat: high-ranking males have
insufficient time to maintain special friendships with all local females; and new males by
definition cannot yet be long-term friends, nor can they attain high-rank immediately. In
addition, females may choose to mate promiscuously, to maximize sperm competition
and to confuse paternity, thereby inducing several males to protect the offspring, and to
guard against infanticide (Hrdy, 1979; Small, 1993). Despite Darwin's (1871) discussion
of sexual selection for the various beards, tufts, and colorful hair styles that adorn male
primates, female choice for aesthetic displays and indicators has rarely been
investigated in primates, perhaps because the relevant sexual selection theory has been
developed only recently. However, female primates often exhibit preferences that
cannot be accounted for on the basis of male rank, age, novelty, grooming effort, or
protection effort. Sometimes, primates just seem to like each other based on
appearance, behavior, and personality.
Although primates follow the general animal pattern of male sexual competition and
female choosiness, female competition and male mate choice is also important (Smuts,
1987). In monogamous callitrichids such as marmosets and tamarins, female compete
to form pairs with quality males and drive off competing females. In unimale polygynous
systems, the dominant male's sperm becomes a limiting resource, and high-ranking
females prevent low-ranking females from mating through aggression and harassment
(Small, 1988). In multimale groups, females compete to form consortships and
friendships with favored males. Such patterns of female competition suggest some
degree of male mate choice. When the costs of sexual competition and courtship are
high, as they are for most primates, males have incentives to be choosy about how they
allocate their competitive effort, courtship effort, and sperm among the available females.
Males compete much more intensely for females that show signs of fertility such as
sexual maturity, estrus behavior, absence of lactation, and presence of offspring (Smuts,
1987). Male primates almost always avoid adolescent, low-ranking, nulliparous (no-
offspring) females and prefer older, high-ranking, multiparous (several offspring) females
who have already demonstrated their fertility, viability, social savvy, and mothering skills.
Marriage (i.e. legally-imposed, life-long monogamy) has overturned this male mate
choice pattern in modern human societies by pushing males to compete for unmarried,
nulliparous young women of unproven fertility and uncertain status — a recent pattern
that Symons (1979), Buss (1989, 1994), and others have projected into the ancestral
past. Like females, male primates also show strong individual preferences for particular
mates with whom they have developed special relationships (Smuts, 1985). The myth
that romantic love is a recent invention of Western patriarchy denies not only the warm
sexual relationships of humans in other cultures and historical epochs, but also those of
other primate species.
In summary, sexual selection in multi-male, multi-female primate groups is intense
because the social context of mating is so complex and dynamic. Both sexes compete,
both sexes are choosy, both sexes have dominance relations, and both sexes form
alliances. Sexual relationships develop over weeks and years rather than minutes.
Under these relentlessly social conditions, reproductive success came to depend on
mental capacities for "chimpanzee politics" (De Waal, 1982, 1989), "Machiavellian
intelligence" (Byrne & Whiten, 1988), "special friendships" (Smuts, 1985), and creative
courtship (Miller, 1993) rather than simple physical ornaments and short-term courtship
behaviors as in most other animals.
6 Sexual selection in hominids
It is hard to reconstruct sexual selection patterns in extinct animals because mate
preferences and courtship behaviors don't fossilize. However, it seems reasonable to
suppose that the primate tradition of intense sexual selection within highly social groups
persisted in our hominid ancestors, with ever-larger group sizes, and ever-more-complex
relationships and sexual strategies. We are the products of this primate heritage
refracted through a unique hominid sequence of habitats and econiches (Foley, 1987),
combined with the unpredictable effects of runaway social competition for Machiavellian
intelligence (Byrne & Whiten, 1988; Dunbar, 1992), and runaway sexual selection for
various courtship behaviors (Miller, 1993).
Fossils and genetic markers suggest that hominids diverged from other anthropoid apes
around 6 million years ago (mya), leading to increasing bipedalism, group size, and
omnivory in the sequence Australopithecus ramidus , A. afarensis, and A. africanus.
By two mya, hominids had divided into two main branches (see Foley, 1987):
Paranthropus (also known as Australopithecus), including P. robustus and P. boisei,
and Homo, including successively Homo habilis (2.0-1.8 mya), Homo erectus (1.8-0.5
mya), and Homo heidelbergensis (400,000-120,000 years ago). This latter type split into
two species (see Stringer & Gamble, 1993): the Neanderthals (Homo neanderthalensis,
200,000-40,000 years ago), and modern Homo sapiens (120,000 years ago to the
present). Because the Pleistocene period covers the era from two mya until recently,
and Homo sapiens probably evolved and migrated out of Africa quite recently (see
Gamble, 1993), hominids and humans are largely a product of Pleistocene Africa.
How mate choice shaped human nature
Mating among our ancestors probably occurred in the context of small, mobile hunter-
gatherer tribes. As with most primates, social life was probably centered on matrilines
(female kin groups and their offspring), with the males largely fending for themselves,
hovering around the periphery, and trying to insinuate themselves into the powerful
female bands (see Dunbar, 1988). Under these conditions, the central mating problem
for males was inseminating mature, attractive, viable, fertile females (Buss & Schmidt,
1993). The central mating problem for females was obtaining good sperm and good
genes from high-quality males, and perhaps some provisioning and protection from a
few males whose presence was not more trouble than it was worth. Equally unlikely are
the tough-minded view of the Pleistocene as a brutal, male-dominated era of continuous
warfare, frequent rape, and anarchy (e.g. Ardrey, 1976), and the tender-minded picture
of life-long pair-bonded monogamy and heavy male investment (Lovejoy, 1981). Male
scientists have been reluctant to recognize that, for the most part, adult male hominids
must have been rather peripheral characters in human evolution, except as bearers of
traits sexually-selected by females for their amusement value or utility.
Hominids probably did not live in discrete tribes with mutually-exclusive and stable
memberships, well-defined territories, or coherent group movements. Social
organization was more complex and multi-layered, as it is in other primates (Dunbar,
1988). Thus, mates may have been chosen not from within the small bands that
characterize day-to-day foraging, but from the much larger congregations that occurred
at special times (e.g. food-rich seasons, or “harvest carnivals”) and places (e.g. water
sources, or “beaches”). Social and sexual relations were probably at least as fluid,
complex, and ad hoc as they are today, with plenty of polygamy, serial monogamy and
infidelity(see H. Fisher, 1992; Ford & Beach, 1951; Lockard & Adams, 1991; Shostak,
1981). Without marriage, mortgages, or money, why stick with just one lover during a
lifetime? Given this social complexity and fluidity, each sex probably evolved a multitude
of flexible strategies for pursuing their mating goals (Buss & Schmidt, 1993; Simpson &
Gangestad, 1992). An individual's current strategy might depend on their personal
attributes (e.g. age, health, attractiveness, parenting skill, social skills, and seduction
skills), the state of their kin network and social network(e.g. number of dependable
child-care helpers), and various ecological conditions(e.g. reliability and patchiness of
resources, foraging costs and dangers) and demographic conditions (e.g. operational
sex ratio).
Primates and especially hominids are extremely `K-selected' taxa: we have much
slower development, larger bodies, fewer offspring, higher survival rates, and longer
lifespans than more `r-selected' taxa such as insects, fish, or rodents (Harvey, Martin, &
Clutton-Brock, 1986). The more K-selected the species, the more important sexual
selection usually becomes compared to natural selection (Miller & Todd, 1995). We
might expect that as hominids evolved to be more and more K-selected, the relative
importance of sexual selection increased. K-selection usually reduces the relative
energetic demands of reproduction on the female and almost eliminates the need for
male help, because slow gestation spreads maternal investment over a longer period,
and small litters of large, well-developed offspring are easier to care for. However,
human brains grow so large that infants must be born relatively immature to fit through
the female pelvic canal: "human gestation is really 21 months long, with 9 months in the
uterus followed by 12 months in the mother's care" (Martin, 1992, p. 87). The
helplessness and expense of human infants increases both the nongenetic and genetic
benefits from mating: choosing males for their provisioning and protection ability eases
the energetic burden of motherhood, but choosing males for their indicators of genetic
quality and their aesthetic displays reduces the risk of producing sickly, unattractive
offspring that may never reproduce. Thus, whereas infant dependency favors male
provisioners, infant expense favors males with good genes and good displays. Foley
(1992) provides life-history and nutritional evidence that the latter was more important:
human infants do not grow using more energy per month than other ape infants, as
paternal provisioning would have made possible — they simply grow for a longer time.
Such data undermine the common assumption that male hunting was somehow
important in feeding infants and mothers, and in supporting the energetic costs of
encephalization (cf. Buss, 1992, 1994; Lovejoy, 1981; Knight, Power, & Watts, 1995).
Many people assume that the opportunities for mate choice would have been severely
limited under ancestral conditions, due to the supposed prevalence of arranged
marriages, the exchange of women as chattel between families and tribes, the influence
of cultural rules concerning incest, outbreeding, marriage, monogamy, and adultery, and
the generally low status of women under patriarchy. But there is good archaeological
and ethnographic evidence that many of these factors arose within the last 10, 000
years, where they arose at all (see H. Fisher, 1992). The economic and geographic
demands of agriculture distorted human mate choice patterns, because agriculture
requires long-term investment in preparing and maintaining a plot of land, and thereby
reduces the physical and social mobility that underlay the free choice of sexual mates in
hunter-gatherer tribes. Modern mating behavior may not accurately reflect ancestral
patterns of sexual selection. But we will turn next to modern human morphology —
which, being less influenced by culture, is more reliable evidence of ancestral mate
choice patterns.
7 Sexual selection and human morphology
Humans show sexual dimorphism in several traits. Compared to females, males on
average have more height and mass, more upper-body strength, higher metabolic rates,
more facial and bodily hair, deeper voices, larger brains, and riskier life histories, with
higher juvenile mortality, later sexual maturity, and earlier death (Ankney, 1992; Daly &
Wilson, 1983, 1988; Ghesquiere, Martin, & Newcombe, 1985; Rushton, 1995; Short &
Balaban, 1994). Our moderate size dimorphism is consistent with our species having
evolved under a moderately polygynous mating system, with more intense sexual
competition between males than between females (Fleagle, Kay, & Simons, 1980;
Martin, Willner, & Dettling, 1994). But human bodies reveal much more than just the
degree of ancestral polygyny; they indicate a wide array of mate choice criteria used by
our male and female ancestors.
Compared to other anthropoid apes, humans have less hair on our bodies, more on our
heads, whiter eyes, longer noses, larger ear lobes, more everted lips, smaller and safer
teeth, more expressive faces, more dextrous hands, and better-developed pheromone
systems (Margulis & Sagan, 1991; Miller, 1993; Morris, 1985; Napier, 1993; Stoddart,
1990). Also, male humans have rather long, thick, and flexible penises compared to
other primates, larger beards, and sometimes baldness later in life; female humans
have greatly enlarged breasts and buttocks, a greater orgasmic capacity, and continual
`sexual receptivity' throughout the monthly cycle. Many of these traits show hallmarks of
having evolved under the capricious power of sexual selection: they are uniquely
elaborated in our species, show considerable sexual dimorphism, are grown only after
puberty (sexual maturity), become engorged and displayed during sexual arousal, are
How mate choice shaped human nature
manifestly valued as sexual signals, and are selectively elaborated through ornament
and make-up (Miller, 1993; Morris, 1985). Such traits probably evolved both as
indicators (of fertility, viability, age, health, and lack of infestation by pathogens and
parasites) and as aesthetic displays (that play upon pre-existing or co-evolved
perceptual biases). Sexual selection research has focused particularly on the human
face, the breasts and buttocks, the penis, and the clitoris. These will be examined in
The human face is a major target of selective mate choice during all stages of courtship,
from flirtation through face-to-face copulation. Research on human facial aesthetics has
boomed in the last few years (Alley & Cunningham, 1991; Brown & Perrett, 1993;
Langlois & Roggman, 1990; Perrett, May, & Yoshikawa, 1994), revealing that average
faces are attractive, but that females with more `neotenous' (child-like) faces, including
large eyes, small noses, and full lips, are still more attractive, as are males will
testosterone-enlarged features such as high cheekbones, strong jaws, strong chins, and
large noses (R. Thornhill & Gangestad, 1993). Bilateral symmetry is another important
determinant of facial beauty, because symmetry correlates with "developmental
competence"— resistance to disease, injury, and harmful mutations that cause
"fluctuating asymmetry" during development (Moller & Pomiankowski, 1993; R. Thornhill
& Gangestad, 1993). Also, as Darwin (1872) emphasized, human facial musculature is
uniquely well-developed for displaying a variety of expressions, many of which are used
in courtship.
Darwin (1871) assumed that genitals evolve purely through natural selection for
fertilization ability, but Eberhard (1985, 1991) has demonstrated a substantial role for
female choice in the evolution of male genitalia. The human penis is a prime example:
men have the longest, thickest, and most flexible penises of any living primate. Gorillas,
orangutans, and chimpanzees have very thin `filiform' penises less than three inches
long when fully erect, and made rigid by muscular control combined with a baculum
(penis bone). By contrast, human penises average over 5 inches long and one and a
quarter inches in diameter, and use an unusual system of vasocongestion (blood
inflation) to achieve erection(Sheets-Johnstone, 1990; Short, 1980). The size and
flexibility of the human penis is more likely the result of female choice than sperm
competition because sperm competition generally favors large testicles, as in the small-
penised chimpanzee (Baker & Bellis, 1995; Harcourt & Harvey, 1984; G. Parker, 1984;
Smith, 1984).
The female clitoris is anatomically homologous to the male penis, and although its
structure probably did not evolve directly under male mate choice, clitoral orgasm has
two important roles in sexual selection. First, as a female mate choice mechanism,
clitoral orgasm favors males capable of providing high levels of sexual stimulation. Over
the short term, orgasm promotes vaginal and uterine contractions that suck sperm into
the uterus and minimize post-coital `flowback' therefrom (Baker & Bellis, 1995). Over
the long term, pleasurable orgasms promote future copulations with the favored male
through reinforcement learning and emotional attachment. Some male scientists (e.g.
Gould, 1987; Symons, 1979) have questioned whether human female orgasm is an
adaptation at all, because it can be hard to achieve. But is makes sense for a `choosy
clitoris' to produce orgasm only given substantial foreplay and emotional warmth,
because this would reinforce only sex with males who have the willingness and skill to
provide the right kinds of sexual stimulation. Thus, the sexual dimorphism between
penis and clitoris could be viewed as a direct physical manifestation of the two
components of Fisher's runaway process: a highly elaborated male trait (the penis)
designed to stimulate, and a highly discerning female preference (the clitoral orgasm)
designed to respond selectively to skillful stimulation. The second role for orgasms is to
advertise happiness to lovers. Given the fact that orgasms come hard, only when sex is
long, varied, and exciting rather than brief, mechanical, and perfunctory, orgasms can
serve as fairly reliable indicators of female sexual satisfaction, commitment, and fidelity.
Thus, some aspects of female orgasm may have evolved through male mate choice to
promote male certainty of paternity (and hence male protection and investment). If so,
we can understand why females advertise their orgasms through clear tactile, visual,
and auditory signals such as strong vaginal contractions and hip movements, the sexual
blush over face and chest, and passionate vocalizations (see Morris, 1985).
Female human breasts and buttocks have undergone sexual elaboration through mate
choice by males. These organs store substantial amounts of fat, so could function as
indicators of female nutritional status and hence fertility (Low, Alexander, & Noonan,
1987; Szalay & Costello, 1992). Singh (1993) showed that males prefer women who
display a low waist-to-hip ratio (WHR), ideally about 0.70, concordant with enlarged
buttocks indicating sufficient fat reserves, and a narrow waist indicating non-pregnancy.
Permanent enlargement of breasts and buttocks is also fairly effective at concealing
ovulation (Margulis & Sagan, 1991; Szalay & Costello, 1992). Females who do not
reveal their menstrual or lactational cycles may benefit from male uncertainty by being
able to solicit male attention and investment even when they are not really fertile: "From
hairy, flat-chested ape to modern buxom woman ... males were kept guessing about
when females were ovulating" (Margulis & Sagan,1991, p. 96). More generally, the loss
of a specific estrus period, combined with `concealed ovulation' and `continuous sexual
receptivity', may have allowed females to attract more continuous attention (e.g.
protection, provisioning, social support) from males even when they were not ovulating
(Alexander & Noonan, 1979; H. Fisher, 1982; Hrdy, 1981, 1988; Hrdy & Whitten, 1987;
Tanner, 1981).
Sexually-selected morphological features are important to the study of evolution and
human behavior for three main reasons. First, there is no sharp division between body
and brain: apparently simple bodily adaptations also have physiological, neurological,
and psychological features. The richly-innervated penis, clitoris, nipple, and mouth are
as much psychological organs as physical objects. Second, the mate choice
mechanisms that assess bodily features are easy to study experimentally and may lead
to insights about mate choice with respect to more complex mental and behavioral traits.
Finally, body features reveal patterns of ancestral mate choice relevant to understanding
human mental evolution. Mate choice by males has shaped female breasts, buttocks,
and orgasms; mate choice by females has shaped male body size, beards, and penises.
Mutual mate choice has probably influenced human hair, skin, eyes, lips, ears, face
shape, hands, and pheromones. If our male and female ancestors were both selecting
for bodily traits, it seems likely that they were also both selecting for mental and
behavioral traits. By overcoming the Cartesian split between body and mind, we can
better appreciate the role of mate choice in shaping both.
8 Sexual selection and human mental evolution
"Most evolutionary anthropologists now believe that big brains contributed to
reproductive success either by enabling men to outwit and outscheme other men
How mate choice shaped human nature
(and women to outwit and outscheme other women), or because big brains were
originally used to court and seduce members of the other sex."(Ridley,1993, p.
Could sexual selection have shaped not only the human body, but the human mind?
Darwin (1871) clearly thought so, but most 20th century theorists have viewed natural
selection as the exclusive director of human mental evolution. Even those who granted
a role to sexual selection focused more on male sexual competition than on mate
choice. Chance (1962) suggested that sexual selection would have favored young
males that show intelligence and caution in challenging dominant males, and in forming
coalitions to take territories and intimidate females. Fox (1972) argued along similar
lines that sexual selection would have favored male hunting prowess, leadership, and
tool making. Alexander (1971) viewed organized warfare for possession of females and
mating-relevant resources as a major force in human evolution. Caspari (1972)
considered oratory as an arena of male competition and suggested a role for sexual
selection in the evolution of language. In a fairly sketchy but provocative paper, S.
Parker (1987) proposed that sexual selection could help account for the evolution of
bipedalism, canine reduction, tool-making, fire-using, shelter-construction, and language.
This emphasis on male competition made sense when Darwin's theory of female choice
was still considered unfounded. But given the resurgence of interest in mate choice in
other species, perhaps the role of mate choice in human mental evolution deserves
another look.
But why bother with sexual selection? What's wrong with the traditional story that
natural selection just generally favored intelligence, learning, tool-making, and culture?
The problem is that the evolution of big brains is so rare, so recent, so capricious, and
seemingly so unrelated to the demands of habitat or econiche (Miller, 1993). Brain size
in our lineage has tripled over the last two million years, reflecting the evolution of
unprecedented mental and behavioral capacities. Over three million years ago, our
ancestors were already successful, social, fairly bipedal, tool-making hunter-gatherers
on the African savanna — and they had brains only slightly larger than the
chimpanzee's. Then, two million years ago, for no apparent reason, brain size started
growing exponentially in our lineage but not in other closely-related hominid species who
shared the same habitat, such as Paranthropus boisei and robustus. Encephalization
then stopped about 100, 000 years ago, again for no apparent reason, long before the
Neolithic revolution in technology and art 40, 000 years ago. Extreme encephalization
also happened in some species of cetaceans (dolphins and whales) and proboscids
(elephants) living in quite different environments, but has not occurred in other primates
living in quite similar environments (e.g. baboons, chimpanzees, Paranthropus
The speed, uniqueness, and capriciousness of this encephalization process has
prompted many theorists to accept that human mental evolution must have been driven
by some sort of positive-feedback process that is sensitive to initial conditions. There
have been two traditional contenders. In the runaway social competition model (Byrne &
Whiten, 1988; Humphrey, 1976; Whiten, 1991; also see Miller, in press), hominids got
smarter to predict and manipulate each others' behavior, leading to a social-intelligence
arms race between mind-reading and deception. In the runaway gene-culture co-
evolution model, hominids got smarter to learn and use material culture (e.g. tools and
survival techniques), which was itself evolving (Durham, 1991; Lumsden & Wilson, 1982;
Wills, 1993). Yet these theories overlook the clearest and best-established case of
positive-feedback evolution in nature: runaway sexual selection. The runaway process
is a good fit to the human evolution data because it begins and ends unpredictably,
without much relation to the external environment, but it is extremely powerful and
directional once underway (Miller, 1993; Miller & Todd, 1993).
As we saw in section 6, hominid social life probably allowed considerable scope for mate
choice by both males and females. Our ancestors lived in hunter-gatherer tribes that
probably had rather fluid, complex, and polygynous mating patterns, rather different from
the modern ideals of lifelong monogamy and nuclear family. The mate choice patterns
permitted by tribal life could have favored several classes of courtship behaviors that
function as indicators: `viability-indicators' that demonstrate physical health, energy, and
freedom from disease, deformity, or deleterious mutation, `age-indicators' that reveal
age, reproductive status, and survival prospects, `social-success-indicators' that reveal
social skills for dominance, competition, aggression, deception, peace-making,
communication, and unpredictability, and `cognition-indicators' that reveal mental
capacities for perception, attention, memory, planning, and creativity. In addition,
perceptual biases in mate choice would have favored `aesthetic displays' of complex,
interesting, innovative behaviors that are less closely correlated with fitness in other
domains. Together, these forms of mate choice could have set up runaway sexual
selection for more complex and creative `behavioral courtship displays' such as stories,
myths, jokes, rituals, dance, music, art, and sexual foreplay.
If the brain evolved through runaway sexual selection, what were the relevant traits and
preferences? Two uniquely elaborated aspects of the human brain are its creativity
(Boden, 1991, 1994; D. Campbell, 1960; Freyd, 1994) and its neophilia, or love of
novelty (Zuckerman, 1984). Perhaps creativity itself became a trait subject to sexual
selection by neophilia as a mate preference. More technically, mental capacities for
generating `protean' (adaptively unpredictable) courtship displays may have been
subject to `neophilic' mate preferences in both sexes (on proteanism see Driver &
Humphries, 1988).
Neophilia influences mate choice in many species. Darwin (1871) observed that “mere
novelty, or slight changes for the sake of change, have sometimes acted on female birds
as a charm, like changes of fashion with us.” Males of many species are more sexually
excited by novel females (Dewsbury,1981). Females of several bird species prefer
males who display larger song repertoires with greater diversity and novelty (Catchpole,
1980, 1987; Podos, Peters, Rudnicky, Marler, & Nowicki 1992). Such neophilic mate
choice may account for the creativity of male blackbirds, nightingales, sedge warblers,
mockingbirds, parrots, and mynahs. Small (1993) emphasized neophilia in primate
mate choice: "The only consistent interest seen among the general primate population
is an interest in novelty and variety." Neophilia (termed `openness') is one of the `Big
Five' personality traits in humans (see Buss, 1991), and shows moderate heritability
(Plomin & Rende, 1991; Zuckerman, 1984). Of course, in modern society, human
neophilia is the foundation of the art, music, television, film, publishing, drug, travel,
pornography, fashion, and research industries, which account for a substantial
proportion of the global economy. Before such entertainment industries amused us, we
had to amuse each other on the African savanna — and our neophilia may have
demanded ever-more creative displays from our mates. This hypothesis can explain the
mysterious `cultural' capacities that are universally and uniquely developed in humans,
such as language, music, dance, art, humor, intellectual creativity, and innovative sexual
play. These are all highly valued during mate choice and highly useful during courtship.
How mate choice shaped human nature
Such displays all use a uniquely human trick: the creative recombination of learned
semantic elements (e.g. words, notes, movements, visual symbols) to produce novel
arrangements with new emergent meanings (e.g. stories, melodies, dances, paintings).
This trick allows human courtship displays not just to tickle another's senses, but to
create new ideas and emotions right inside their minds, where they will most influence
mate choice.
The gradual evolution of language was especially important, because it allowed
hominids to display complex ideas and images to one another using an increasingly
complex, structured, open-ended, combinatorial system (Pinker, 1994). Language gave
potential mates a unique window into each other's minds, so allowed much more direct
sexual selection on the mind itself. Also, language permits gossip, which can transform
mate choice from an individual decision to a social decision that integrates information
from family and friends. With language and gossip, courtship displays need not be
observed directly; they need only be witnessed by someone who can talk later to
potential mates. The feedback loop between sexual selection, language complexity, and
mental complexity was probably the mainspring of human mental evolution.
The lack of sexual dimorphism in human mental capacities is not a fatal problem for this
sexual selection theory. We would expect men and women to have similar minds given
the genetic linkage between the sexes, the mutuality of mate choice, the interactiveness
of courtship behaviors (e.g. conversation, dance, and musical dueting), and the overlap
between perceptual capacities for judging complex behaviors (e.g. understanding
language) and motor capacities for generating complex behaviors (e.g. speaking
language). The general notion of mental evolution through mate choice has been
presently more fully elsewhere (Miller, 1993, 1994, 1995, in press; Miller & Pratto, 1992;
Miller & Todd, 1993, 1995; Todd & Miller, 1993).
A methodological problem arises: how could one demonstrate that a mental adaptation
really evolved through mate choice? As section 5 showed, sexually-selected human
bodily traits can be identified by being uniquely elaborated in our species, growing only
after puberty, becoming engorged and displayed during sexual arousal, being selectively
elaborated through ornament and make-up, being manifestly valued as sexual signals,
and showing sexual dimorphism. Similar criteria for special design features can also be
applied to mental and behavioral traits. If a behavior is uniquely human, is selectively
displayed by adult humans during courtship and sexual competition, is displayed in
different forms and frequencies by males and females, and is clearly valued as a sexual
display, then it is worth investigating as a sexually-selected adaptation. By these
adaptationist criteria, many aspects of human cognition and culture would thus fall
under the rubric of courtship behavior: language, art, music, humor, acting, mimicry,
metaphor, sports, games, ritual, myth, ideology, religion, politics, and science. More
generally, sexually-selected adaptations are expected to show complex organization
specially attuned to reliably, efficiently, and flexibly perform certain functions in sexual
competition and/or courtship (on adaptations, see Williams, 1966; Tooby & Cosmides,
1990). Such adaptations can also be identified through the comparative method (Harvey
& Pagel, 1991) by examining the distribution of traits across related species with known
phylogenies, to discern when and where evolutionary innovations occurred. New
methods in cognitive neuroscience (see Gazzaniga, 1995) should also allow localization
of the mental adaptations underlying these courtship capacities, and comparison to
homologous structures in other primates.
One might also check whether such adaptations are currently under sexual selection, by
seeing whether (1) the trait shows heritable variation (e.g. a moderate coefficient of
additive genetic variation — see Moller & Pomiankowski, 1993), and whether (2)
individuals exhibiting one form of the trait have greater mating success (e.g. number of
copulations, partners, or offspring) than individuals exhibiting other forms. One might
also show that individuals can (consciously or unconsciously) discriminate among
variants of the trait, and do exhibit a preference for one variant. To further establish that
a trait functions as an indicator, one must show that variants of the trait correlate with
some indicated quality such as age, health, fertility, or social status. To establish that a
trait is evolving at least partially under the runaway process, one must show genetic
linkage between the trait and the corresponding preference. However, all such
questions of utility in current societies are a bit tangential to the question of adaptive
function under ancestral conditions.
9 Sexual selection and human culture
Theories of human mental evolution are theories of human nature, and theories of
human nature are the foundation of psychology, the social sciences, and the
humanities (Tooby & Cosmides, 1992). So, if sexual selection played a major but little-
appreciated role in shaping human evolution, and if sexually-selected traits are the most
central, distinctive, and long-overlooked components of the human mind, then the
standard model of human nature used in the social sciences and humanities probably
focuses too heavily on the economics of survival and not enough on the mental,
material, and cultural demands of courtship. Sexual competition probably underlies
many political, economic, sociological, anthropological, criminological, cultural,
ideological, religious, moral, and artistic phenomena (e.g. see Barkow, 1989; Betzig,
1986, 1992; Daly & Wilson, 1988; L. Ellis, 1993; Frank, 1985; Ridley, 1993; Wright,
1994), but it has been almost entirely overlooked as an explanatory principle. Instead,
`culture' has become the dominant explanation for all human social and communicative
behavior, despite its vagueness as a scientific concept (see Cosmides & Tooby, 1994;
Sperber, 1994; Tooby & Cosmides, 1992). Rather than viewing culture as the reason for
individual human behavior, we might view culture as an emergent phenomenon arising
from sexual competition among vast numbers of individuals pursuing different mating
strategies in different display arenas.
For example, only sexual selection theory can provide a coherent, non-circular account
of `cultural dimorphism': why have males always dominated political, economic, and
cultural life in every known society? Most feminist theories of `patriarchy' simply beg the
question by viewing male power as a self-sustaining tradition, without offering any
plausible explanation of its origins. Traditional religious, reactionary, and sexist
ideologies also beg the question, by invoking unexplained `natural' or divinely ordained
sex differences. But if most `economic behavior' is mating effort by males to acquire
material resources for attracting and provisioning females, and if most `cultural behavior'
is male mating effort to broadcast courtship displays to multiple female recipients, then
cultural dimorphism is easily explained by sexual selection.
The age and sex demographics of cultural production are almost the same as the
demographics of homicide (Miller, 1995; see Daly & Wilson, 1988): males produce about
an order of magnitude more art, music, literature, and violent death than women, and
they produce it mostly in young adulthood. This suggests that, like violent sexual
How mate choice shaped human nature
competition, the production of art, music, and literature functions primarily as a courtship
display. For males, the mating benefits of public cultural displays are large because
every additional short-term mating achieved through impressing some receptive female
represents a substantial increase in expected fitness. Because male reproductive
success can be virtually unlimited, the amount of energy and time that talented men are
motivated to invest in cultural displays should be virtually unlimited. For example,
although the gifted guitarist Jimi Hendrix died at age 27 from a drug overdose, he had
affairs with hundreds of groupies, and fathered children in the U. S., Germany, Britain,
and Sweden. Composer J. S. Bach fathered 8 children by his first wife and 11 by his
second. The sexual conquests of Picasso, Chaplin, and Balzac are legendary. As every
teenager knows and most psychologists forget, cultural displays by males increase their
sexual success.
But for females, the genetic benefits of public cultural displays are smaller, because their
maximum reproductive success is constrained directly by their maternal investment
ability (i.e. the time required for pregnancy and lactation), not by the number of short-
term matings they can achieve. Rather than broad-casting her courtship displays to all
males indiscriminately and risking sexual harassment from undesirables, it may be more
effective for a woman to narrow-cast her courtship displays to a few select males who
are capable of giving her the long-term care, attention, and resources she wants. This
could be called the `Scheherezade strategy', after the woman who retained a sultan's
intellectual attention, sexual commitment, and paternal investment by inventing fantastic
stories throughout a thousand and one nights. Thus, cultural dimorphism is much more
likely to reflect a difference in motivation and sexual strategy than a difference in basic
mental capacity.
10 Conclusion
In sexually-reproducing species, all genes must propagate through the gateway of sex,
and mate choice is the guardian of that gateway. For this reason, sexual courtship was
probably central in human evolution, and remains central in modern human life.
However, sexual selection has long been overlooked in the human sciences, partially
because evolutionary biologists themselves were skeptical about Darwin's most
innovative theory until quite recently, and partially because various ideological biases
kept sex marginalized as a topic too messy, too mystical, too embarrassing, and too
arousing for scientific analysis. We have to face the possibility that if human evolution
was a film, it would be X-rated.
This chapter has reviewed the history of sexual selection theory, the diversity of mate
choice criteria (selection for indicators, aesthetic displays, sperm competition,
provisioning, territories, and protection), the logic and limits of sex differences, the
patterns of sexual selection in primates and hominids, and the parts of the human body,
the human mind, and human culture that have probably evolved through sexual
selection. But this is all only the tip of the sexberg: a snap-shot of the sometimes eager,
sometimes resistant human sciences trying to absorb an unexpectedly large and potent
body of biological theory and evidence. The rapture will be mutual though, because a
new appreciation of sexual selection allows the tightest possible fit between (1) well-
established biological theory and data, (2) universal and important aspects of human
nature and human psychology, and(3) universal and important aspects of human culture
and social life. This integration, though necessary for future progress, will be difficult for
the social sciences and the humanities because it undermines and replaces some of
their cherished models of human nature(e.g. Freud, Marx, social-constructivism), and
because it demands research concerning the adaptive functions rather than just the
proximate mechanisms of human social, sexual, and cultural behavior. But if we
recognize the role of sexual selection in the evolution of human intelligence, creativity,
and culture, perhaps some of the old dichotomies — passion/reason, mind/body,
nature/culture, sex/science — can finally be reconciled.
Future histories of science will probably look back at our era as a critical point during
which human self-understanding was challenged and re-cast more deeply than ever
before. While the conceptual novelties of Copernicus, Adam Smith, Marx, Einstein, and
Freud have lost their revolutionary edge, the Darwinian revolution continues to dig
deeper and more sharply into the human soul (see Dennett, 1995; Ridley, 1993; Wright,
1994). Just when we thought we were comfortable with the idea of blind natural
selection shaping human nature, the eerie, half-sentient process of sexual selection
came back from the dead, more powerful and ubiquitous than ever. A full recognition of
the role of mate choice and sexual competition in human affairs and human evolution
may shake not only our psychology, but our psyches. It remains to be seen whether we
have the intellectual creativity, the sexual self-confidence, and the existential courage to
pursue these inquiries to their completion.
The author's research was supported partly by NSF-NATO Post-Doctoral Research
Fellowship RCD-9255323. For institutional support, thanks to the University of Sussex,
the University of Nottingham, the London School of Economics, and the Max Planck
Society. For guidance and illuminating discussions, thanks to Rosalind Arden, David
Buss, Charles Crawford, Leda Cosmides, Helena Cronin, Martin Daly, Robin Dunbar,
Dennis Krebs, Chris Knight, John Maynard Smith, Sara Paulson, John Tooby, and
Andrew Pomiankowski.
Alexander, R. D. (1971). The search for an evolutionary philosophy of man. Proc.
Royal Society of Victoria, 84(1), 99-120.
Alexander, R. D. (1989). The evolution of the human psyche. In P. Mellars & C.
Stringer (Eds.), The human revolution: Behavioural and biological perspectives on the
origins of modern humans. (pp. 455-513). Edinburgh U. Press.
Alexander, R. D., & Noonan, K. M. (1979). Concealment of ovulation, parental care, and
human social evolution. In N. A. Chagnon & W. Irons (Eds.), Evolutionary biology and
human social behavior: An anthropological perspective. (pp. 402-435). North Scituate,
MA: Duxbury Press.
Alley, T. R., & Cunningham, M. R. (1991). Averaged faces are attractive, but very
attractive faces are not average. Psychological Science, 2(2), 123-125.
How mate choice shaped human nature
Andersson, M. (1982). Sexual selection, natural selection, and quality advertisements.
Biological J. Linn. Soc. , 17, 375-393.
Andersson, M. (1986). Evolution of condition-dependent sex ornaments and mating
preferences: Sexual selection based on viability differences. Evolution, 40, 804-820.
Andersson, M. (1994). Sexual selection. Princeton U. Press.
Ankney, C. D. (1992). Sex differences in relative brain size: The mismeasure of
woman, too? Intelligence, 16, 329-336.
Ardrey, R. (1976). The hunting hypothesis. New York: Athenaeum.
Atmar, W. (1991). On the role of males. Animal Behavior, 41, 195-205.
Baker, R. R., & Bellis, M. A. (1995). Human sperm competition. London: Chapman &
Bakker, T. C. M. (1993). Positive genetic correlation between female preferences and
preferred male ornament in sticklebacks. Nature, 363, 255-257.
Balmford, A. (1991). Mate choice on leks. Trends in Ecology and Evolution, 6, 87-92.
Barkow, J. (1989). Darwin, sex, and status. U. Toronto Press.
Basolo, A. L. (1990). Female preference predates the evolution of the sword in
swordfish. Science, 250, 808-810.
Bateman, A. J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349-368.
Bateson, P. (Ed.). (1983). Mate choice. Cambridge U. Press.
Batten, M. (1992). Sexual strategies: How females choose their mates. New York;
Betzig, L. (1986). Despotism and differential reproduction: A Darwinian view of history.
Hawthorne, NY: Aldine.
Betzig, L. (1992). Roman Polygyny. Ethology and Sociobiology, 13, 309-349.
Betzig, L., Borgerhoff Mulder, M., & Turke, P. (Eds.) (1988). Human reproductive
behaviour: A Darwinian perspective. Cambridge U. Press.
Blum, M. S., & Blum, N. A. (Eds.). (1979). Sexual selection and reproductive
competition in insects. New York: Academic Press.
Boden, M. (1991). The creative mind. New York: Basic Books.
Boden, M. (Ed.). (1994). Explorations in creativity. MIT Press.
Borgia, G. (1979). Sexual selection and the evolution of mating systems. In M. S.
Blum & N. A. Blum (Eds.), Sexual selection and reproductive competition in insects. (pp.
19-80). New York: Academic Press.
Boyce, M. S. (1990). The Red Queen visits sage grouse leks. American Zoologist, 30,
Bradbury, J. W., & Andersson, M. B. (Eds. ). (1987). Sexual selection: Testing the
alternatives. New York: John Wiley.
Brown, E., & Perrett, D. I. (1993). What gives a face its gender? Perception, 22, 829-
Brownmiller, S. (1975) Against our will: Men, women, and rape. New York: Simon &
Burley, N. (1979). The evolution of concealed ovulation. American Naturalist, 114, 835-
Burley, N. (1988). Wild zebra finches have band-color preferences. Animal Behavior,
36, 1235-1237.
Buss, D. M. (1985). Human mate selection. American Scientist, 73, 47-51.
Buss, D. M. (1989). Sex differences in human mate selection: Evolutionary hypotheses
tested in 37 cultures. Behavioral and Brain Sciences, 12(1), 1-49.
Buss, D. M. (1991). Evolutionary personality psychology. Annual Review of
Psychology, 42, 459-491.
Buss, D. M. (1992). Mate preference mechanisms: Consequences for partner choice
and intrasexual competition. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The
adapted mind: Evolutionary psychology and the generation of culture (pp. 249-266).
Oxford U. Press.
Buss, D. M. (1994). The evolution of desire: Human mating strategies. New York:
Basic Books.
Buss, D. M., & Malamuth, N. (Eds.). (in press) Sex, power, and conflict: Evolutionary
and feminist perspectives. Oxford U. Press.
Buss, D. M., Schmitt, P. (1993). Sexual strategies theory: An evolutionary perspective
on human mating. Psychological Review, 100(2), 204-232.
Byrne, R., & Whiten, A. (Eds.). (1988). Machiavellian intelligence: Social expertise and
the evolution of intellect in monkeys, apes, and humans. Oxford U. Press.
Campbell, B. (Ed.). (1972). Sexual selection and the descent of man, 1871-1971.
Chicago: Aldine Atherton.
How mate choice shaped human nature
Campbell, D. (1960). Blind variation and selective retention in creative thought as in
other knowledge processes. Psychological Review, 67, 380-400.
Campbell, B. (Ed.). (1972). Sexual selection and the descent of man. Chicago: Aldine.
Caspari, E. (1972). Sexual selection in human evolution. In B. Campbell (Ed.), Sexual
selection and the descent of man (pp. 87-104). Chicago: Aldine.
Catchpole, C. K. (1980). Sexual selection and the evolution of complex song among
European warblers of the genus Acrocephalus. Behavior, 74, 149-166.
Catchpole, C. K. (1987). Bird song, sexual selection and female choice. Trends in
Evolution and Ecology, 2, 94-97.
Chagnon, N. (1983). Yanomamo: The fierce people (3rd ed.). New York: Holt,
Rinehart, & Winston.
Chance, M. R. A. (1962). Social behavior and primate evolution. In M. F. A. Montagu
(Ed.), Culture and the evolution of man (pp. 84-130). Oxford U. Press.
Charlesworth, B. (1987). The heritability of fitness. In Bradbury, J. W., & Andersson,
M. B. (Eds.), Sexual selection: Testing the alternatives (pp. 21-40). New York: John
Clutton-Brock, T. H. (1991). The evolution of parental care. Princeton U. Press.
Cosmides, L., & Tooby, J. (1987). From evolution to behavior: Evolutionary psychology
as the missing link. In J. Dupre (Ed.), The latest on the best: Evolution and optimality.
MIT Press.
Cosmides, L., & Tooby, J. (1994). Origins of domain specificity: The evolution of
functional organization. In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind:
Domain specificity in cognition and culture (pp. 85-116). Cambridge U. Press.
Cott, H. B. (1940). Adaptive coloration in animals. London: Methuen.
Cronin, H. (1991). The ant and the peacock: Altruism and sexual selection from Darwin
to today. Cambridge U. Press.
Daly, M., & Wilson, M. (1983). Sex, evolution, and behavior (2nd ed.) Boston: Willard
Grant Press.
Daly, M., & Wilson, M. (1988). Homicide. New York: Aldine.
Darwin, C. (1859). On the origin of species by means of natural selection. London:
John Murray.
Darwin, C. (1871). The descent of man, and selection in relation to sex (2 vols.).
London: John Murray.
Darwin, C. (1872). The expression of the emotions in man and animals. London: John
Dawkins, R., & Krebs, J. R. (1978). Animal signals: information or manipulation? In J.
R. Krebs & N. B. Davies (Eds.), Behavioral ecology: An evolutionary approach (pp.
282-309). Oxford: Blackwell Scientific.
Davies, N. B. (1991). Mating systems. In J. R. Krebs & N. B. Davies (Eds.),
Behavioral ecology: An evolutionary approach (3rd Ed) (pp. 263-294). London:
Blackwell Scientific.
De Waal, F. (1982) Chimpanzee politics. New York: Harper & Row.
De Waal, F. (1989). Peacemaking among primates. Cambridge, MA: Harvard U.
Dennett, D. (1995). Darwin's dangerous idea. New York: Simon & Schuster.
Dewsbury, D. A. (1981). Effects of novelty on copulatory behavior: The Coolidge effect
and related phenomena. Psychological Bulletin, 89, 464-482.
Dobzhansky, T. (1937). Genetics and the origin of species. (Reprinted 1982).
Columbia U. Press.
Dugatkin, L. (1992). Sexual selection and imitation: Females copy the mate choice of
others. American Naturalist, 139, 1384-1389.
Dunbar, M. (1988). Primate social systems. London: Croom Helm.
Dunbar, R. (1992). Neocortex size as a constraint on group size in primates. J.
Human Evolution, 22(6), 469-493.
Durham, W. H. (1991). Coevolution. Stanford U. Press.
Eberhard, W. G. (1985). Sexual selection and animal genitalia. Harvard U. Press.
Eberhard, W. G. (1991). Copulatory courtship and cryptic female choice in insects.
Biological Review, 66, 1-31.
Ellis, H. (1905). Sexual selection in man. Philadelphia: F. A. Davis.
Ellis, H. (1934). Man and woman: A study of secondary and tertiary sexual characters
(8th ed.). London: W. Heinemann.
Ellis, L. (Ed.). (1993). Social stratification and socioeconomic inequality. Vol. 1. A
comparative biosocial analysis. London: Praeger.
Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution.
American Naturalist, 139, S125-S153.
How mate choice shaped human nature
Endler, J. A. (1993). Some general comments on the evolution and design of animal
communication systems. Phil. Trans. R. Soc. Lond. B. (340), 215-225.
Enquist, M., & Arak, A. (1993). Selection of exaggerated male traits by female aesthetic
senses. Nature, 361, 446-448.
Fisher, H. (1982). The sex contract. New York: W. Morrow.
Fisher, H. (1992). Anatomy of love: The natural history of monogamy, adultery, and
divorce. New York: Simon & Schuster.
Fisher, R. A. (1915). The evolution of sexual preference. Eugenics review, 7, 184-192.
Fisher, R. A. (1930). The genetical theory of natural selection. Clarendon Press.
Fleagle, J. G., Kay, R. F., & Simons, E. L. (1980). Sexual dimorphism in early
anthropoids. Nature, 287, 328-330.
Foley, R. (1987). Another unique species: Patterns in human evolutionary ecology.
Harlow, Essex: Longman Scientific & Technical.
Foley, R. (1994). Ecology and energetics of encephalization in hominid evolution. In A.
Whiten & E. M. Widdowson (Eds.), Foraging strategies and the natural diet of monkeys,
apes and humans. Oxford U. Press.
Ford, C. S., & Beach, F. A. (1951). Patterns of sexual behavior. New York: Harper &
Fox, R. (1972). Alliance and constraint: Sexual selection in the evolution of human
kinship systems. In B. Campbell (Ed.), Sexual selection and the descent of man, 1871-
1971 (pp. 282-311). Chicago: Aldine Atherton.
Frank, R. (1985). Choosing the right pond. Oxford U. Press.
Freyd, J. J. (1994). Circling creativity. Psychological Science, 5(3), 122-126.
Gamble, C. (1993). Timewalkers: The prehistory of global colonization. Phoenix Mill,
England: Alan Sutton.
Gazzaniga, M. (1995). The cognitive neurosciences. MIT Press.
Ghesquiere, J., Martin, R. D., Newcombe, F. (Eds.) (1985). Human sexual dimorphism.
Taylor and Francis.
Goss, R. J. (1983). Deer antlers: Regeneration, function, and evolution. New York:
Academic Press.
Gould, S. J. (1987). Freudian slip. Natural History, Feb., 14-19.
Grafen, A. (1990). Biological signals as handicaps. J. Theoretical Biology, 144, 517-
Guilford, T., & Dawkins, M. S. (1991). Receiver psychology and the evolution of animal
signals. Animal Behavior, 42, 1-14.
Hamilton, W. D., Axelrod, R.., & Tanese, R. (1990). Sexual reproduction as an
adaptation to resist parasites (A review). Proc. Nat. Acad. Sci. USA, 87, 3566-3573.
Hamilton, W. D., and Zuk, M. (1982). Heritable true fitness and bright birds: A role for
parasites? Science 218, 384-387.
Haraway, D. (1989). Primate visions; Gender, race, and nature in the world of modern
science. New York: Routledge.
Harcourt, A. H., & Harvey, P. H. (1984). Sperm competition, testes size, and breeding
systems in primates. In R. Smith (Ed.), Sperm competition and the evolution of animal
mating systems. New York: Academic Press.
Harvey, P. H., & Bradbury, J. W. (1993). Sexual selection. In J. R. Krebs & N. B. Davies
(Eds.), Behavioral ecology: An evolutionary approach (3rd ed.) (pp. 203-233). London:
Blackwell Scientific.
Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology.
Oxford U. Press.
Harvey, P. H., Martin, R., & Clutton-Brock, T. (1986). Life histories in comparative
perspective. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T.
Struthsaker (Eds.), Primate societies (pp. 181-196). U. Chicago Press.
Hausfater, G., & Hrdy, S. B. (Eds.). (1984). Infanticide: Comparative and evolutionary
perspectives. New York: Aldine.
Heywood, J. S. (1989). Sexual selection by the handicap mechanism. Evolution, 43,
Hoelzer, G. A. (1989). The good parent process of sexual selection. Animal Behaviour,
38(6), 1067-1078.
Houde, A. E., & Endler, J. A. (1990). Correlated evolution of female mating preferences
and male color patterns in the guppy Poecilia reticulata. Science, 248, 1405-1408.
Hrdy, S. B. (1979). Infanticide among animals: A review, classification, and
examination of the implications for the reproductive strategies of females. Ethology and
Sociobiology, 1, 13-40.
Hrdy, S. B. (1981). The woman that never evolved. Harvard U. Press.
Hrdy, S. B., & Whitten, P. L. (1987). Patterning of sexual activity. In B. B. Smuts, D. L.
Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struthsaker (Eds.), Primate societies
(pp. 370-384). U. Chicago Press.
How mate choice shaped human nature
Hrdy, S. B. (1988). The primate origins of human sexuality. In R. Bellig and G. Stevens
(Eds.), The evolution of sex (pp. 101-136). San Francisco: Harper & Row.
Humphrey, N. (1976). The social function of intellect. Reprinted in Byrne, R., & Whiten,
A. (Eds.) (1988). Machiavellian intelligence, pp. 13-26. Oxford U. Press.
Huxley, J. S. (1938). The present standing of the theory of sexual selection. In G. R. de
Beer (Ed.), Evolution: Essays on aspects of evolutionary biology (pp. 11-42). Oxford:
Clarendon Press.
Iwasa, Y., Pomiankowski, A., & Nee, S. (1991). The evolution of costly mate
preferences. II. The `handicap' principle. Evolution, 45(6), 1431-1442.
Jones, I. L., & Hunter, F. M. (1993). Mutual sexual selection in a monogamous seabird.
Nature, 36, 238-239.
Kirkpatrick, M. (1982). Sexual selection and the evolution of female choice. Evolution,
36, 1-12.
Kirkpatrick, M. (1987). The evolutionary forces acting on female preferences in
polygynous animals. In Bradbury, J. W., & Andersson, M. B. (Eds.), Sexual selection:
Testing the alternatives (pp. 67-82). New York: John Wiley.
Kirkpatrick, M. (1992). Direct selection on female mating preferences: Comments of
Grafen's models. J. Theoretical Biology, 154:127-129.
Kirkpatrick, M., Price, T., & Arnold, S. J. (1990). The Darwin-Fisher theory of sexual
selection in monogamous birds. Evolution, 44(1), 180-193.
Kirkpatrick, M., & Ryan, M. J. (1991). The evolution of mating preferences and the
paradox of the lek. Nature, 350, 33-38.
Knight, C., Power, C., & Watts, I. (1995). The human symbolic revolution: A Darwinian
account. Cambridge Archaeological Journal, 5(1), 75-114.
Kondrashov, A. (1988). Deleterious mutations as an evolutionary factor III. Mating
preference and some general remarks. J. Theoretical Biology, 131, 487-496.
Kramer, B. (1990) Sexual signals in electric fish. Trends in Ecology and Evolution, 5,
Lancaster, J. B. (1991). A feminist and evolutionary biologist looks at women.
Yearbook of Physical Anthropology, 34, 1-11.
Lande, R. (1980). Sexual dimorphism, sexual selection, and adaptation in polygenic
characters. Evolution, 34, 292-305.
Lande, R. (1981). Models of speciation by sexual selection on polygenic characters.
Proc. Nat. Acad. Sciences USA, 78, 3721-3725.
Lande, R. (1987). Genetic correlation between the sexes in the evolution of sexual
dimorphism and mating preferences. In J. W. Bradbury & M. B. Andersson (Eds.),
Sexual selection: Testing the alternatives. New York: John Wiley.
Langlois, J. H., & Roggman, L. A. (1990). Attractive faces are only average.
Psychological Science, 1(2), 115-121.
Lockard, J. S., Adams, R. M. (1991). Human serial polygyny: Demographic,
reproductive, marital, and divorce data. Ethology and Sociobiology, 2, 177-186.
Low, B. (1990). Marriage systems and pathogen stress in human societies. American
Zoologist, 30, 325-339.
Low, B., Alexander, R. M., & Noonan, K. M. (1987). Human hips, breasts, and buttocks:
Is fat deceptive? Ethology & Sociobiology, 8, 249-257.
Lovejoy, C. O. (1981). The evolution of man. Science, 211, 341-350.
Lumsden, C. J., & Wilson, E O. (1982). Precis of Genes, Mind, and Culture.
Behavioral and Brain Sciences, 5, 1-37.
Margulis, L., & Sagan, D. (1991). Mystery dance: On the evolution of human sexuality.
New York: Summit Books.
Martin, R. (1992). Primate reproduction. In S. Jones, R. Martin, & D. Pilbeam (Eds.),
The Cambridge encyclopedia of human evolution (pp. 86-90). Cambridge U. Press.
Martin, R. D., Willner, L. A., & Dettling, A. (1994). The evolution of sexual size
dimorphism in primates. In R. V. Short & E. Balaban (Eds.), The differences between
the sexes (pp. 159-200). Cambridge U. Press.
Maynard Smith, J. (1976). Sexual selection and the handicap principle. J. Theoretical
Biology, 57, 239-242.
Mayr, E. (1972). Sexual selection and natural selection. In B. Campbell (Ed.), Sexual
selection and the descent of man 1871-1971. Chicago: Aldine Atherton.
Michod, R. E., & Levin, B. R. (Eds.). (1988). The evolution of sex: An examination of
current ideas. Sinauer.
Miller, G. F. (1993). Evolution of the human brain through runaway sexual selection:
The mind as a protean courtship device. Ph.D. thesis, Stanford University Psychology
Department. (Available through UMI Microfilms; Book in preparation for MIT
Press/Bradford Books).
Miller, G. F. (1994). Exploiting mate choice in evolutionary computation: Sexual
selection as a process of search, optimization, and diversification. In T. C. Fogarty (Ed.),
Evolutionary Computing: Proceedings of the 1994 Artificial Intelligence and Simulation
of Behavior (AISB) Society Workshop (pp. 65-79). Springer-Verlag.
How mate choice shaped human nature
Miller, G. F. (1995). Darwinian demographics of cultural production. Talk at the Human
Behavior and Evolution Society Seventh Annual Meeting, U. C. Santa Barbara, June
Miller, G. F. (in press). Psychological selection in primates: The evolution of adaptive
unpredictability in competition and courtship. For A. Whiten & R. W. Byrne (Eds.),
Machiavellian Intelligence II. Oxford U. Press.
Miller, G. F. & Pratto, F. Political ideology as a form of sexual display. Talk at the Human
Behavior and Evolution Society Fourth Annual Conference, Albequerque, July 1992.
Miller, G. F., & Todd, P. M. (1993). Evolutionary wanderlust: Sexual selection with
directional mate preferences. In J.-A. Meyer, H. L. Roitblat, & S. W. Wilson (Eds.), From
Animals to Animats 2: Proc. Second Int'l Conf. on Simulation of Adaptive Behavior
(pp. 21-30). MIT Press.
Miller, G. F., & Todd, P. M. (1995). The role of mate choice in biocomputation: Sexual
selection as a process of search, optimization, and diversification. In W. Banzaf & F.
Eeckman (Eds.), Evolution and biocomputation: Computational models of evolution.
Lecture notes in computer science 899. (pp. 169-204). Springer-Verlag.
Moller, A. P. (1988). Female choice selects for male sexual tail ornaments in the
monogamous swallow. Nature, 332(6165), 640-642.
Moller, A. P., & Pomiankowski, A. (1993). Fluctuating asymmetry and sexual selection.
Genetica, 89, 267-279.
Morgan, T. H. (1903). Evolution and adaptation. New York: Macmillan.
Morris, D. (1985). Bodywatching: A field guide to the human species. New York: Crown
Napier, J. (1993). Hands (Rev. ed.). Princeton U. Press.
O'Donald, P. (1980). Genetic models of sexual selection. Cambridge U. Press.
Parker, G. A. (1984). Sperm competition. In R. L. Smith (Ed.). Sperm competition and
animal mating systems. New York: Academic Press.
Parker, S. T. (1987). A sexual selection model for hominid evolution. Human Evolution,
2(3), 235-253.
Partridge, L. (1980). Mate choice increases a component of offspring fitness in fruit
flies. Nature, 283, 290-291.
Perrett, D. I., May, K. A., & Yoshikawa, S. (1994). Facial shape and judgments of
female attractiveness. Nature, 368(March 17), 239-242.
Petrie, M. (1992). Peacocks with low mating success are more likely to suffer
predation. Animal Behavior, 44, 585-586.
Petrie, M., Halliday, T., & Sanders, C. (1991). Peahens prefer peacocks with elaborate
trains. Animal Behavior, 41, 323-331.
Pinker, S. (1994). The language instinct. London: Allen Lane.
Plomin, R., & Rende, R. (1991). Human behavioral genetics. Annual Review of
Psychology, 42, 161-190.
Podos, J., Peters, S., Rudnicky, T., Marler, P., & Nowicki, S. (1992). The organization of
song repertoires in song sparrows: Themes and variations. Ethology, 90(2), 89-106.
Pomiankowski, A. (1987). The costs of choice in sexual selection. J. Theoretical
Biology, 128, 195-218.
Pomiankowski, A. (1988). The evolution of female mate preferences for male genetic
quality. Oxford Surveys in Evolutionary Biology, 5, 136-184.
Pomiankowski, A. (1995). A resolution of the lek paradox. Proc. R. Soc. London B,
260(1357), 21-29.
Pomiankowski, A., Iwasa, Y., & Nee, S. (1991). The evolution of costly mate
preferences. I. Fisher and biased mutation. Evolution, 45(6), 1422-1430.
Price, T. D., Schluter, D., & Heckman, N. E. (1993). Sexual selection when the female
directly benefits. Biol. J. Linn. Soc., 48, 187-211.
Pruett-Jones, S. (1992). Independent versus non-independent mate choice: Do
females copy each other? American Naturalist, 140, 1000-1009.
Reynolds, J. D., & Gross, M. R. (1990). Costs and benefits of female choice: Is there a
lek paradox? American Naturalist, 136, 230-243.
Reynolds, J. D., & Gross, M. R. (1992). Female mate preference enhances offspring
growth and reproduction in a fish, Poecilia reticulata. Proc. R. Soc. London B, 250, 57-
Reynolds, J. D., & Harvey, P. H. (1994). Sexual selection and the evolution of sex
differences. In R. V. Short & E. Balaban (Eds.), The differences between the sexes
(pp. 53-70). Cambridge U. Press.
Rice, W. R. (1988). Heritable variation in fitness as a prerequisite for adaptive female
choice: The effect of mutation-selection balance. Evolution, 42, 817-820.
Richards, R. J. (1987). Darwin and the emergence of evolutionary theory of mind and
behavior. U. Chicago Press.
Ridley, M. (1981). How the peacock got his tail. New Scientist, 91, 398-401.
Ridley, M. (1993). The red queen: Sex and the evolution of human nature. New York:
How mate choice shaped human nature
Rodman, P. S., & Mitani, J. C. (1987). Orangutans: Sexual dimorphism in a solitary
species. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T.
Struthsaker (Eds.), Primate societies (pp. 146-154). U. Chicago Press.
Rogers, A. R., & Mukherjee, A. (1992). Quantitative genetics of sexual dimorphism in
human body size. Evolution, 46(1), 226-234.
Rushton, J. P. (1989). Genetic similarity, human altruism, and group selection.
Behavioral and Brain Sciences, 12, 503-559.
Rushton, J. P. (1995). Race, evolution, and behavior: A life history perspective. New
Brunswick, NJ: Transaction Pubs.
Ryan, M. J. (1985). The Tungara Frog: A study in sexual selection and communication.
U. Chicago Press.
Ryan, M. J. (1990). Sexual selection, sensory systems, and sensory exploitation.
Oxford Surveys of Evolutionary Biology, 7, 156-195.
Ryan, M. J., & Keddy-Hector, A. (1992). Directional patterns of female mate choice and
the role of sensory biases. American Naturalist, 139, S4-S35.
Scheib, J. (1994). Sperm donor selection and the psychology of female choice.
Ethology and sociobiology, 15(3), 113-129.
Searcy, W. A. (1982). The evolutionary effects of mate selection. Ann. Rev. Ecol.
Syst., 57-85.
Seyfarth, R. M. (1978). Social relationships among adult male and female baboons, 1:
Behavior during sexual courtship. Behaviour, 64, 204-226.
Sheets-Johnstone, M. (1990). Hominid bipedality and sexual selection theory.
Evolutionary Theory, 9(1), 57-70.
Short, R. V. (1980). The origins of human sexuality. In C. R. Austin & R. B. Short
(Eds.), Reproduction in mammals, 8 (pp. 1-33). Cambridge U. Press.
Short, R. V., & Balaban, E. (Eds.) (1994). The differences between the sexes.
Cambridge U. Press.
Shostak, M. (1981). Nisa: The life and words of a !Kung woman. Harvard U. Press.
Silk, D. (1987). Social behavior in evolutionary perspective. In B. B. Smuts, D. L.
Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struthsaker (Eds.), Primate societies
(pp. 318-329). U. Chicago Press.
Simpson, J. A., & Gangestad, S. W. (1992). Sociosexuality and romantic partner
choice. J. Personality, 60, 31-52.
Singh, D. (1993). Waist-to-hip ratio (WHR): A defining morphological feature of health
and female attractiveness. J. Personality and Social Psychology, 65(2), 293-307.
Small, M. (1988). Female primate sexual behavior and conception: Are there really
sperm to spare? Current Anthropology, 29(1), 81-100.
Small, M. (1993). Female choices: Sexual behavior of female primates. Cornell U.
Smith, R. (1984). Human sperm competition. In R. Smith (Ed.), Sperm competition
and the evolution of animal mating systems. New York: Academic Press.
Smuts, B. B. (1985). Sex and friendship in baboons. New York: Aldine.
Smuts, B. B. (1987). Sexual competition and mate choice. In B. B. Smuts, D. L.
Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struthsaker (Eds.), Primate societies
(pp. 385-399). U. Chicago Press.
Smuts, B. B. (1991). Male aggression against women: An evolutionary perspective.
Human Nature, 3, 1-44.
Sperber, D. (1994). The modularity of thought and the epidemiology of representations.
In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in
cognition and culture (pp. 39-67). Cambridge U. Press.
Stoddart, D. M. (1990). The scented ape: The biology and culture of human odour.
Cambridge U. Press.
Stringer, C., & Gamble, C. (1993). In search of the Neanderthals: Solving the puzzle of
human origins. London: Thames and Hudson.
Sulloway, F. J. (1979). Freud, biologist of the mind: Beyond the psychoanalytic legend.
New York: Basic Books.
Symons, D. (1979). The evolution of human sexuality. Oxford U. Press.
Szalay, F. S., Costello, R. K. (1991). Evolution of permanent estrus displays in
hominids. J. Human Evolution, 20, 439-464.
Tanner, N. M. (1981). On becoming human. Cambridge U. Press.
Thiessen, D., & Gregg, B. (1980). Human assortative mating and genetic equilibrium:
An evolutionary perspective. Ethology and Sociobiology, 1, 111-140.
Thornhill, N. W. (1991). An evolutionary analysis of rules regulating human inbreeding
and marriage. Behavioral and Brain Sciences, 14, 247-293.
Thornhill, N. W. (Ed.). (1993). The natural history of inbreeding and outbreeding.
Chicago U. Press.
Thornhill, R., & Alcock, J. (1983). The evolution of insect mating systems. Harvard U.
How mate choice shaped human nature
Thornhill, R. & Gangestad, S. W. (1993). Human facial beauty: Averageness,
symmetry, and parasite resistance. Human Nature, 4(3), 237-269.
Thornhill, R., & Thornhill, N. W. (1992). The evolutionary psychology of men's coercive
sexuality. Behavioral & Brain Sciences, 15, 363-421.
Todd, P. M., & Miller, G. F. (1993). Parental guidance suggested: How parental
imprinting evolves through sexual selection as an adaptive learning mechanism.
Adaptive Behavior, 2(1), 5-47.
Tomlinson, I. P. M. (1988). Diploid models of the handicap principle. Heredity, 60, 283-
Tooby, J., & Cosmides, L. (1990). The past explains the present: Emotional
adaptations and the structure of ancestral environments. Ethology and sociobiology,
11(4/5), 375-424.
Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In J. H.
Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology
and the generation of culture (pp. 19-136). Oxford U. Press.
Trail, P. W. (1990). Why should lek-breeders be monomorphic? Evolution, 44(7), 1837-
Trivers, R. (1972). Parental investment and sexual selection. In B. Campbell (Ed.),
Sexual selection and the descent of man 1871-1971, (pp. 136-179). Chicago: Aldine.
Trivers, R. (1985). Social evolution. Menlo Park, California: Benjamin/Cummings.
Wallace, A. R. (1870). Contributions to the theory of natural selection. London:
Wallace, A. R. (1889). Darwinism: An exposition of the theory of natural selection, with
some of its applications. London: Macmillan.
Weismann, A. (1904). The evolutionary theory. London: E. Arnold Co.
West-Eberhard, M. J. (1984). Sexual selection, competitive communication, and
species-specific signals in insects. In T. Lewis (Ed.), Insect communication (pp. 283-
324). New York: Academic Press.
Westermark, E. (1894). The history of human marriage (2nd ed.). London.
Whiten, A. (Ed.). (1991). Natural theories of mind. Basil Blackwell.
Wilcockson, R. W., Crean, C. S., & Day, T. H. (1995). Heritability of a sexually selected
character in both sexes. Nature, 374(6518), 158-159.
Williams, G. C. (1966). Adaptation and natural selection. Princeton U. Press.
Williams, G. C. (1975). Sex and evolution. Princeton U. Press.
Wills, C. (1993). The runaway brain: The evolution of human uniqueness. New York:
Basic Books.
Wilson, E. O. (1975). Sociobiology: The new synthesis. Harvard U. Press.
Wright, R. (1994). The moral animal: Evolutionary psychology and everyday life. New
York: Pantheon Books.
Zahavi, A. (1975). Mate selection — a selection of handicap. J. Theoretical Biology,
53, 205-214.
Zahavi, A. (1991). On the definition of sexual selection, Fisher's model, and the
evolution of waste and of signals in general. Animal Behaviour, 42(3), 501-503.
Zuckerman, M. (1984). Sensation seeking: A comparative approach to a human trait.
Behavioral and Brain Sciences, 7, 413-471.
How mate choice shaped human nature
... Speech and singing abilities share activation patterns and processing components within the brain (Peretz, 2009), and psychological experiments show that musical sounds induce emotional and behavioral changes (Launay et al., 2016;Nowell, 2018), for example, the singsong quality of "musical speech" and "motherese" strengthens bonds between infants and mothers (Falk, 2004). It has been claimed that music emerged early among ancestral hominins (Mithen, 2007), potentially in relation to sexual selection and gaining higher quality mates (Miller, 1998), and that synchronized chorusing by male hominins to attract females might be an origin of human music (Hagen & Hammerstein, 2009; also see Launay et al., 2016;Miller, 1998). Evidence supporting these hypotheses, however, is scarce and unconvincing (Fitch, 2006). ...
... Speech and singing abilities share activation patterns and processing components within the brain (Peretz, 2009), and psychological experiments show that musical sounds induce emotional and behavioral changes (Launay et al., 2016;Nowell, 2018), for example, the singsong quality of "musical speech" and "motherese" strengthens bonds between infants and mothers (Falk, 2004). It has been claimed that music emerged early among ancestral hominins (Mithen, 2007), potentially in relation to sexual selection and gaining higher quality mates (Miller, 1998), and that synchronized chorusing by male hominins to attract females might be an origin of human music (Hagen & Hammerstein, 2009; also see Launay et al., 2016;Miller, 1998). Evidence supporting these hypotheses, however, is scarce and unconvincing (Fitch, 2006). ...
... Despite variation in mating patterns, the inclusive fitness advantages of cooperative breeding would increase selection for motivations and qualities enhancing collaboration (Tomasello et al., 2012), especially close ties between female kin (Hawkes et al., 1997;1998), which may have been crucial in ameliorating the costs of polygyny and uncertainties around facultative male parental care (Hrdy, 2009;Kramer et al., 2017;Sear & Mace, 2008). ...
Despite a remarkably persistent pop culture image of Neanderthals as semi-upright, hairy, cavemen wielding clubs, science provides us with a different picture. There is no doubt that the evolutionary forces that shaped Neanderthals and Homo sapiens differed, but recent evidence of interbreeding tells us that our anatomy and physiology were compatible and differences in physical appearance were not an obstacle to social interaction. Similarities in growth and development indicate that, like us, Neanderthals also gave birth to helpless young, and imply complex social lives necessary to support reproduction and protracted phases of offspring development. Of course, some uncertainty will always surround the behaviors of extinct species, but we can be sure that Neanderthals had sex and successfully reproduced for hundreds of thousands of years, and the archeological record and DNA evidence can illuminate behaviors that are invisible anatomically. In this chapter, we synthesize diverse data, theories, and models to reconsider aspects of Neanderthal sexual and reproductive behavior, and contextualize inferences within our current understanding of their physical characteristics, life-ways, and genomics.
... Both Darwin and Wallace agreed that sexual selection involves competition between same-sex conspecifics for access to reproductive opportunities (i.e., intrasexual competition; Miller, 1998;Hoquet and Levandowsky, 2015). However, they proposed competing ideas regarding the action of intersexual selection and what drives the evolution of esthetic appreciation and preferential mate choice in humans and non-human animals. ...
... Darwin's "esthetic" view was aligned with the notion that ornaments could become attractive for reasons that have little to do with phenotypic condition (a "taste for the beautiful"). Therefore, Darwin and Wallace expressed divergent ideas regarding the evolution of sexual dimorphism and secondary sexual characteristics (Miller, 1998;Prum, 2012;Hoquet and Levandowsky, 2015). Wallace disagreed that non-human animals could possess an "esthetic sense" and was opposed to Darwin's position that naturalistic explanations should be used to understand human cognitive, emotional, and esthetic capacities. ...
... These models are well represented in research in evolutionary psychology on the operation of mate preferences. Alternative models intended to account for female choice that resonate more with Darwin's esthetic view have been reviewed in evolutionary psychology (e.g., Gangestad and Thornhill, 1997;Miller, 1998;Gangestad, 2001;Frederick et al., 2013), but they are given comparatively less consideration among researchers in the field. ...
Full-text available
Dominant theorizing and research surrounding the operation of intersexual selection in evolutionary psychology tends to be guided by an adaptationist framework and aligned with models of sexual selection involving direct benefits (e.g., parental care) and indirect "good gene" and condition-dependent benefits. In this way, evolutionary psychologists more often espouse Alfred Russel Wallaces' utilitarian viewpoint that traits become attractive because they honestly signal vigor and vitality, which gives priority to natural selection. In doing so, Darwin's esthetic perspective originally articulated in The Descent of Man and alternative models of sexual selection (e.g., Fisherian runaway), are given less consideration. This is despite some informative reviews on the topic in evolutionary psychology. In the current conceptual analysis, we discuss the potential of Prum's Lande-Kirkpatrick (LK) null model of sexual selection to help make sense of some of the mixed evidence regarding the links between attractive traits and purported markers of phenotypic and genetic condition. We then consider how the implications of the LK null model can help to shift theoretical assumptions and guide future work in evolutionary psychology on intersexual selection.
... In other words, each sex tends to mate with individuals who ensure that the offspring will inherit characteristics that facilitate survival or are aesthetically attractive. Those offspring will have a greater probability of reproducing in the future (Miller, 1998). ...
... In general, the study of preferences for mate selection has been a widely explored topic (Buss & Barnes, 1986;Buss & Schmitt, 2019;Buss et al., 2001;Conroy-Beam & Buss, 2016;Hill, 1945;Lee et al., 2014;Miller, 1998;Russock, 2011;Shackelford et al., 2005;Simpson & Gangestad, 1992;Waynforth & Dunbar, 1995). Based on studies using multiple research methods, common patterns have been found in the preference of characteristics as Kindness/Wellness of relationships, Social Status/ Financial Resources, and Physical Attractiveness/ Health, in the case of long-term mate selection (Shackelford et al., 2005). ...
... Coding system. The coding system (i.e., trait classification scheme) was built based on the concepts proposed in the theory of sexual strategies (Buss & Schmitt, 1993), the theoretical approaches related to indicators of genetic quality (Miller, 1998;Sefcek et al., 2007), and the analytical categories used in Waynforth and Dunbar's (1995) study of mate search publications (See Figure 1 and Table 1). ...
Full-text available
The present work aims to study which factors are relevant in long-term mate selection from a lonely-hearts personal advertisement sample of Spanish-speaking consumers of Cosmopolitan Magazine, Colombian Edition. We analyzed One thousand four hundred sixty-eight publications (made by 770 men and 698 women) using a coding system based on the theories of sexual strategies, genetic quality indicators, and the preference classification used in personal ads studies. Initially, we found trends as a greater predilection for psychological attributes and a greater demand to require more traits than offering them. In addition, the cross-cultural pattern demonstrated that men prefer women’s physical characteristics, while women require status/resources by men. Finally, men tended to be more selective in the age range of 36-45 years, while women’s selectivity decreased with age. The results replicate many of the patterns found in investigations related to human sexual selection, also bring enlightenment about new preference dimensions to study in the future.
... To be specific, Darwin explained the evolution of ornaments by their inherent aesthetic quality and not necessarily by which fitness quality they could indicate. There has been an ongoing theoretical debate about the exact mechanisms underlying sexual selection (Miller, 1998;Davis and Arnocky, 2022). Thus, future behavioral studies should be more carefully designed to be able to differentiate between such mechanisms. ...
Full-text available
A number of theories about the origins of musicality have incorporated biological and social perspectives. Darwin argued that musicality evolved by sexual selection, functioning as a courtship display in reproductive partner choice. Darwin did not regard musicality as a sexually dimorphic trait, paralleling evidence that both sexes produce and enjoy music. A novel research strand examines the effect of musicality on sexual attraction by acknowledging the importance of facial attractiveness. We previously demonstrated that music varying in emotional content increases the perceived attractiveness and dating desirability of opposite-sex faces only in females, compared to a silent control condition. Here, we built upon this approach by presenting the person depicted (target) as the performer of the music (prime), thus establishing a direct link. We hypothesized that musical priming would increase sexual attraction, with high-arousing music inducing the largest effect. Musical primes (25 s, piano solo music) varied in arousal and pleasantness, and targets were photos of other-sex faces of average attractiveness and with neutral expressions (2 s). Participants were 35 females and 23 males (heterosexual psychology students, single, and no hormonal contraception use) matched for musical background, mood, and liking for the music used in the experiment. After musical priming, females' ratings of attractiveness and dating desirability increased significantly. In males, only dating desirability was significantly increased by musical priming. No specific effects of music-induced pleasantness and arousal were observed. Our results, together with other recent empirical evidence, corroborate the sexual selection hypothesis for the evolution of human musicality.
... Intrasexual competition among males leads to the evolution of armaments that can be used in combat for sexual access to females (Andersson, 1994;Darwin, 1871;Emlen, 2008;Puts, 2010). In humans, adult males are, on average, larger, more muscular, taller, and more physically aggressive than adult females (Archer, 2009;Miller, 1998;Nettle, 2002b;Ruff, 2002). Physical strength and body size in men are the result of an evolutionary history of intrasexual competition and signal and facilitate competitiveness, formidability, and resource-holding power (Archer & Thanzami, 2007;Sell, Lukazsweski, & Townsley, 2017;Stulp, Buunk, & Pollet, 2013). ...
As proposed by Trivers in 1972, Parental Investment Theory addresses sex differences that result from the trade-off between parenting and mating efforts. This half-century-old theory has contributed profoundly to our understanding of sexual behavior and psychology. According to Parental Investment Theory, the sex that has higher parental investment will be more selective when choosing a mate, while the sex with lower investment will compete intrasexually for mating opportunities (Trivers, 1972). Parental investment is defined as “any investment by the parent in an individual offspring that increases the offspring’s chance of surviving (and hence reproductive success) at the cost of the parent’s ability to invest in other offspring” (Trivers, 1972, p. 139), such as investment in the forms of gestation, lactation, food provisioning, protection, and the training of offspring. In many species, including humans, females invest substantially more in parenting compared to males. This chapter considers the sexual behaviors that have evolved as a function of differences in parental investment, with a specific focus on Homo sapiens.
... For those Developmental Psychologists who would like to read more about Evolutionary Theory and its application to human development, particularly in childhood, The Origins of Human Nature (Bjorklund and Pellegrini, 2002) is an important introduction, as are Human Infancy (Freedman, 1974), Ethology and Human Development (Archer, 1992), and Adaptive Origins (LaFrenière, 2010; see also Geary and Bjorklund, 2000;Salmon and Shackelford, 2007;Ellis et al., 2009;Konner, 2010;Geary and Berch, 2016;Bjorklund, 2020;Geary, 2020;Hart and Bjorklund, 2022). Many articles offer good introductions to Sexual Selection theory and its relevance to human development (e.g., Buss, 1995;Miller, 1998;Bjorklund and Pellegrini, 2000;Schmitt, 2005;Puts, 2016;Wilson et al., 2017). ...
Full-text available
Developmental Psychology is the branch of psychology that studies, not only human behavior, but how and why human behavior changes over time. This essay seeks to review to what extent Developmental Psychology has failed to perceive human behavior through the lens of evolutionary theory in general, and in particular sexual selection as first described by Darwin and later elaborated on by many, including Robert Trivers and Geoffrey Miller; the essay asserts that this failure has resulted in many wrong turns and missed opportunities. In some cases, major developmental theorists (e.g., Freud, Erikson) were bedeviled by sex-based differences which they saw but could not explain and which compromised the parsimony of their stage theories. In the case of stage theories of moral development, some major theorists (e.g., Piaget, Kohlberg) were able to offer simpler explanations of moral development only by limiting their studies to male subjects. And, while Developmental Psychology textbooks thoroughly describe sex differences in the timing of morphological changes in puberty, writers seldom discuss why the timing is different in the two sexes, universally, and functionally. On the other hand, several domains of developmental focus, including play, mate choice, parenting, and spatial cognition, have seen successful research efforts that utilized sexually selected predispositions as foundational assumptions. The essay concludes with a discussion of how a more evolutionary and functional view of human behavior might move the field of Developmental Psychology to an even more robust and accurate understanding of how humans change over the course of a lifetime.
... As an inseparable part of their lives, the Internet presents them with a wealth of information and enables them to experience and examine their sexuality with a false sense of privacy provided by the screen (Suler, 2004). School-based sex education programs vary across regions and countries (Loeber et al., 2010;Padilla-Walker, 2018), therefore the family plays an important role in the sexual socialization of children and adolescents, and the information mediated by the family (or the lack thereof) can influence the adolescents' attitudes, decisions, and actions (Diiorio et al., 2003;Flores & Barroso, 2017;Miller, 1998). The present study examined the effect of various aspects of parenting (gender, parenting styles, perception of parental sense of competence, and attitudes regarding sexuality) on parent-child communication on the topic of sexting. ...
Full-text available
Sexting (sending, receiving, and forwarding nude, semi-nude, or sexually explicit content) entails risks for adolescents; therefore, it is important for parents to be able to communicate with their children about its implications. The goal of the present study was to identify parental characteristics that lead to dysfunctional communication (lower quality of communication) about sexting, on a sample of 427 parents (336 mothers and 91 fathers) of Israeli adolescents aged 10–18 years and to determine whether parents’ perceived severity of sexting and the degree to which they perceive their adolescent to be susceptible to sexting function as mediating factors. Parents completed a set of questionnaires online. Findings indicated that authoritarian and permissive parenting styles were positively associated with dysfunctional parent–child communication about sexting. Authoritative style was inversely related to dysfunctional communication and was mediated by positive attitudes toward sex education. Additionally, authoritative parents were capable of assessing the severity of their children’s sexting activities, and the degree to which their children were susceptible to engage in sexting. The quality of the discussion initiated by authoritative parents appears to have enabled them to be aware of adolescent behaviors and to adjust their communication about the inherent risks. Findings suggest that the perception of sexting as too risky diminishes parents’ ability to conduct a high-quality discussion about it. In conclusion, research findings emphasize parents’ role in mediation of the online experiences of their children and conducting a constructive discussions with them about sexting.
... The idea that human facial and body sexual dimorphism are both products of sexual selection has a long history (at least 150 years), dating back to Darwin's seminal book "The Descent of Man, and Selection in Relation to Sex" [1]. Since then, evolutionary biologists have been trying to detect which factors determine the strength of mate choice and intensity of sexual selection in each sex, and the progress made in this direction is really impressive [2][3][4][5][6][7]. Sexual dimorphism has been interpreted as a product of the exposure to sex hormones (testosterone, estrogens) [8][9][10][11][12][13][14][15][16][17], and currently some studies pointed to sex differences in genes expression in human tissues [18] and sex differences in immune responses to pathogens, including COVID-19 [19]. ...
Full-text available
Background In this paper, we investigate facial sexual dimorphism and its’ association with body dimorphism in Maasai, the traditional seminomadic population of Tanzania. We discuss findings on other human populations and possible factors affecting the developmental processes in Maasai. Methods Full-face anthropological photographs were obtained from 305 Maasai (185 men, 120 women) aged 17–90 years. Facial shape was assessed combining geometric morphometrics and classical facial indices. Body parameters were measured directly using precise anthropological instruments. Results Sexual dimorphism in Maasai faces was low, sex explained 1.8% of the total shape variance. However, male faces were relatively narrower and vertically prolonged, with slightly wider noses, narrower-set and lower eyebrows, wider mouths, and higher forehead hairline. The most sexually dimorphic regions of the face were the lower jaw and the nose. Facial width-to-height ratio (fWHR), measured in six known variants, revealed no significant sexual dimorphism. The allometric effects on facial traits were mostly related to the face growth, rather than the growth of the whole body (body height). Significant body dimorphism was demonstrated, men being significantly higher, with larger wrist diameter and hand grip strength, and women having higher BMI, hips circumferences, upper arm circumferences, triceps skinfolds. Facial and body sexual dimorphisms were not associated. Conclusions Facial sex differences in Maasai are very low, while on the contrary, the body sexual dimorphism is high. There were practically no associations between facial and body measures. These findings are interpreted in the light of trade-offs between environmental, cultural, and sexual selection pressures.
Similarity in facial and other physical characteristics has been recognized as one aspect of reproductive mate choice in humans. Despite the fact that parental similarity degree may affect offspring already in the early stages of their prenatal development, just a very few empirical studies have focused on the consequences of this non-random process so far. This study included three goals: (1) to test the hypothesis of body assortative mating in humans, (2) to find a relationship between physical similarity of parents and the growth curves of their offspring and (3) to find out how parental similarity affects the growth of offspring. Therefore, the similarities of parents in physical features were analysed in relation to the descriptors of the growth curves of their offspring (n = 184 mother-father-child triads from the Brno Growth Study database). In comparison to randomly generated pairs, real partners were not more similar to each other in any of the observed trait. However, some physical features correlated (mostly positively) between partners. Relationships between physical similarity of parents and the descriptors of the growth curves of their offspring were found. However, parental similarity in various features affected the growth of their offspring differently.
Full-text available
Fisher's runaway process is the standard explanation of the evolution of exaggerated female preferences. But mathematical formulations of Fisher's process (haploid and additive diploid) show it cannot cause stable exaggeration if female preference carries a cost. At equilibrium female fitness must be maximized. Our analysis shows that evolutionary stable exaggeration of female preference can be achieved if mutation pressure on the male character is biased, that is, mutation has a directional effect. At this equilibrium female fitness is not maximized. We discuss the reasons and evidence for believing that mutation pressure is typically biased. Our analysis highlights the previously unacknowledged importance of biased mutation for sexual selection.
Full-text available
Haraway’s discussions of how scientists have perceived the sexual nature of female primates opens a new chapter in feminist theory, raising unsettling questions about models of the family and of heterosexuality in primate research.
Evidence is presented showing that body fat distribution as measured by waist-to-hip ratio (WHR) is correlated with youthfulness, reproductive endocrinologic status, and long-term health risk in women. Three studies show that men judge women with low WHR as attractive. Study 1 documents that minor changes in WHRs of Miss America winners and Playboy playmates have occurred over the past 30-60 years. Study 2 shows that college-age men find female figures with low WHR more attractive, healthier, and of greater reproductive value than figures with a higher WHR. In Study 3, 25- to 85-year-old men were found to prefer female figures with lower WHR and assign them higher ratings of attractiveness and reproductive potential. It is suggested that WHR represents an important bodily feature associated with physical attractiveness as well as with health and reproductive potential. A hypothesis is proposed to explain how WHR influences female attractiveness and its role in mate selection.
Males of monogamous birds often show secondary sexual traits that are conspicuous but considerably less extreme than those of polygynous species. We develop a quantitative-genetic model for the joint evolution of a male secondary sexual trait, a female mating preference, and female breeding date, following a theory proposed by Darwin and Fisher. Good nutritional condition is postulated to cause females to breed early and to have high fecundity. The most-preferred males are mated by early-breeding females and receive a sexual-selection advantage from those females' greater reproductive success. Results show that conspicuous male traits that decrease survival can evolve but suggest that the extent of maladaptive evolution is greatly limited relative to what is possible in a polygynous mating system for two reasons. First, in the absence of direct fitness effects of mate choice on the female, the equilibria for the male trait and female preference form a curve whose shape shows that the maximum possible strength of sexual selection on males (and hence the potential for maladaptive evolution) is constrained. Under certain conditions, a segment of the equilibrium curve may become unstable, leading to two alternative stable states for the male trait. Second, male parental care will often favor the evolution of mating preferences for less conspicuous males. We also find that sexual selection can appear in the absence of the nutritional effects emphasized by Darwin and Fisher. A review of the literature suggests that the assumptions of the Darwin-Fisher mechanism may often be met in monogamous birds and that other mechanisms may often reinforce it by producing additional components of sexual selection.
A classical data set is used to predict the effect of selection on sexual dimorphism and on the population means of three characters-stature, span, and cubit-in humans. Given selection of equal intensity, the population means of stature and of cubit should respond more than 60 times as fast as dimorphism in these characters. The population mean of span should also respond far more rapidly than dimorphism, but no numerical estimate of the ratio of these rates was possible. These results imply that sexual dimorphism in these characters can evolve only very slowly. Consequently, hypotheses about the causes of sexual dimorphism cannot be tested by comparing the dimorphism of different human societies. It has been suggested that primate sexual dimorphism may be an allometric response to selection for larger body size. We show that such selection can indeed generate sexual dimorphism, but that this effect is too weak to account for the observed relationship between dimorphism and body size in primates.
Modele genetique suggerant que l'equilibre mutation-selection seul est suffisant pour produire des variations hereditaires substantielles dans le fitness total dans le cas du choix femelle lorsque les mâles ne contribuent pas a des benefices materiels