Epstein-Barr Virus Nuclear Antigen 3C Facilitates G1-S Transition by Stabilizing and Enhancing the Function of Cyclin D1

University of North Carolina at Chapel Hill, United States of America
PLoS Pathogens (Impact Factor: 7.56). 02/2011; 7(2):e1001275. DOI: 10.1371/journal.ppat.1001275
Source: PubMed


EBNA3C, one of the Epstein-Barr virus (EBV)-encoded latent antigens, is essential for primary B-cell transformation. Cyclin D1, a key regulator of G1 to S phase progression, is tightly associated and aberrantly expressed in numerous human cancers. Previously, EBNA3C was shown to bind to Cyclin D1 in vitro along with Cyclin A and Cyclin E. In the present study, we provide evidence which demonstrates that EBNA3C forms a complex with Cyclin D1 in human cells. Detailed mapping experiments show that a small N-terminal region which lies between amino acids 130-160 of EBNA3C binds to two different sites of Cyclin D1- the N-terminal pRb binding domain (residues 1-50), and C-terminal domain (residues 171-240), known to regulate Cyclin D1 stability. Cyclin D1 is short-lived and ubiquitin-mediated proteasomal degradation has been targeted as a means of therapeutic intervention. Here, we show that EBNA3C stabilizes Cyclin D1 through inhibition of its poly-ubiquitination, and also increases its nuclear localization by blocking GSK3β activity. We further show that EBNA3C enhances the kinase activity of Cyclin D1/CDK6 which enables subsequent ubiquitination and degradation of pRb. EBNA3C together with Cyclin D1-CDK6 complex also efficiently nullifies the inhibitory effect of pRb on cell growth. Moreover, an sh-RNA based strategy for knock-down of both cyclin D1 and EBNA3C genes in EBV transformed lymphoblastoid cell lines (LCLs) shows a significant reduction in cell-growth. Based on these results, we propose that EBNA3C can stabilize as well as enhance the functional activity of Cyclin D1 thereby facilitating the G1-S transition in EBV transformed lymphoblastoid cell lines.

Download full-text


Available from: Masanao Murakami
  • Source
    • "Cyclin A is involved in meiotic progression and has markedly lower expression in cells arrested in the G1 phase33,34,35. Cyclin D1 is a key regulator of the G1 to S phase progression and is aberrantly expressed in numerous human cancers36. The inhibition of cyclin D1 function results in G1 phase arrest, whereas the regulation of G2/M phases primarily depends on cyclin B1 function37. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim: NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor and shows dramatic effects on gliomas. The aim of this study was to investigate the effects of NVP-BEZ235 on the radiosensitivity and autophagy of glioma stem cells (GSCs) in vitro. Methods: Human GSCs (SU-2) were tested. The cell viability and survival from ionizing radiation (IR) were evaluated using MTT and clonogenic survival assay, respectively. Immunofluorescence assays were used to identify the formation of autophagosomes. The apoptotic cells were quantified with annexin V-FITC/PI staining and flow cytometry, and observed using Hoechst 33258 staining and fluorescence microscope. Western blot analysis was used to analyze the expression levels of proteins. Cell cycle status was determined by measuring DNA content after staining with PI. DNA repair in the cells was assessed using a comet assay. Results: Treatment of SU-2 cells with NVP-BEZ235 (10–320 nmol/L) alone suppressed the cell growth in a concentration-dependent manner. A low concentration of NVP-BEZ235 (10 nmol/L) significantly increased the radiation sensitivity of SU-2 cells, which could be blocked by co-treatment with 3-MA (50 μmol/L). In NVP-BEZ235-treated SU-2 cells, more punctate patterns of microtubule-associated protein LC3 immunoreactivity was observed, and the level of membrane-bound LC3-II was significantly increased. A combination of IR with NVP-BEZ235 significantly increased the apoptosis of SU-2 cells, as shown in the increased levels of BID, Bax, and active caspase-3, and decreased level of Bcl-2. Furthermore, the combination of IR with NVP-BEZ235 led to G1 cell cycle arrest. Moreover, NVP-BEZ235 significantly attenuated the repair of IR-induced DNA damage as reflected by the tail length of the comet. Conclusion: NVP-BEZ235 increases the radiosensitivity of GSCs in vitro by activating autophagy that is associated with synergistic increase of apoptosis and cell-cycle arrest and decrease of DNA repair capacity.
    Preview · Article · Apr 2013 · Acta Pharmacologica Sinica
  • Source
    • "Increased CaM causes differences in the organization of microfilaments, intermediate filaments, & microtubules; these changes are accompanied by differences in the cell-cycle dependent expression of some mRNAs [49]. For efficient viral replication, viruses such as EBV, HIV-1 induce cell cycle transition from G1 to S phase [50], [51]. So it is possible that during early RV infection (3 hpi) cell cycle progresses from G1 to S phase. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Rotavirus (RV) being the major diarrhoegenic virus causes around 527000 children death (,5years age) worldwide. In cellular environment, viruses constantly adapt and modulate to survive and replicate while the host cell also responds to combat the situation and this results in the differential regulation of cellular proteins. To identify the virus induced differential expression of proteins, 2D-DIGE (Two-dimensional Difference Gel Electrophoresis) based proteomics was used. For this, HT-29 cells were infected with RV strain SA11 for 0 hours, 3 hours and 9 hours post infection (hpi), differentially expressed spots were excised from the gel and identified using MALDI-TOF/TOF mass spectrometry. 2D-DIGE based proteomics study identified 32 differentially modulated proteins, of which 22 were unique. Some of these were validated in HT-29 cell line and in BALB/c mice model. One of the modulated cellular proteins, calmodulin (CaM) was found to directly interact with RV protein VP6 in the presence of Ca 2+ . Ca 2+ -CaM/VP6 interaction positively regulates RV propagation since both CaM inhibitor (W-7) and Ca 2+ chelator (BAPTA-AM) resulted in decreased viral titers. This study not only identifies differentially modulated cellular proteins upon infection with rotavirus in 2D-DIGE but also confirmed positive engagement of cellular Ca 2+ /CaM during viral pathogenesis.
    Full-text · Article · Jan 2013 · PLoS ONE
  • Source
    • "Viral genes can induce changes in the cell cycle of the host cell during the immortalization of B lymphocytes by EBV [8]. EBV latent proteins can up-regulate cyclin D1 expression in host cell, initiate the cell cycle and promote the G1-S phase transition through several signaling pathways [9,10]. EBV can also induce the up-regulation of CDK2 and CDK1 in the host cell [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Epstain-Barr virus (EBV) can transform human B lymphocytes making them immortalized and inducing tumorigenic ability in vitro, but the molecular mechanisms remain unclear. The aim of the present study is to detect and analyze differentially expressed genes in two types of host cells, normal human lymphocytes and coupled EBV-transformed lymphoblasts in vitro using gene chips, and to screen the key regulatory genes of lymphocyte transformation induced by EB virus. Fresh peripheral blood samples from seven healthy donors were collected. EBV was used to transform lymphocytes in vitro. Total RNA was extracted from 7 cases of the normal lymphocytes and transformed lymphoblasts respectively, marked with dihydroxyfluorane after reverse transcription, then hybridized with 4 × 44 K Agilent human whole genome microarray. LIMMA, String, Cytoscape and other softwares were used to screen and analyze differentially expressed genes. Real-time PCR was applied to verify the result of gene expression microarrays. There were 1745 differentially expressed genes that had been screened, including 917 up-regulated genes and 828 down-regulated genes. According to the results of Generank, String and Cytoscape analyses, 38 genes may be key controlled genes related to EBV-transformed lymphocytes, including 22 up-regulated genes(PLK1, E2F1, AURKB, CDK2, PLCG2, CD80, PIK3R3, CDC20, CDC6, AURKA, CENPA, BUB1B, NUP37, MAD2L1, BIRC5, CDC25A, CCNB1, RPA3, HJURP, KIF2C, CDK1, CDCA8) and 16 down-regulated genes(FYN, CD3D, CD4, CD3G, ZAP70, FOS, HCK, CD247, PRKCQ, ITK, LCP2, CXCL1, CD8A, ITGB5, VAV3, CXCR4), which primarily control biological processes such as cell cycle, mitosis, cytokine-cytokine pathway, immunity response and so on. Human lymphocyte transformation induced by EB virus is a complicated process, involving multiple-genes and -pathways in virus-host interactions. Global gene expression profile analysis showed that EBV may transform human B lymphocytes by promoting cell cycle and mitosis, inhibiting cell apoptosis, hindering host immune function and secretion of cytokines.
    Full-text · Article · Mar 2012 · Virology Journal
Show more