Tachykinin-Immunoreactive Neurons in Developing Feline Neostriatum: Somatodendritic Morphogenesis Demonstrated by Combined Immunohistochemistry/Golgi Impregnation-Gold Toning

Developmental and Molecular Neuroscience Group, Intellectual Development and Disabilities Research Center, Neuropsychiatric Institute, School of Medicine, University of California, Los Angeles, Calif. 90095, USA.
Developmental Neuroscience (Impact Factor: 2.7). 02/2011; 33(1):75-84. DOI: 10.1159/000324158
Source: PubMed


This investigation was designed to survey and characterize the development of a key link between chemically mediated neurotransmission and neuronal cytoarchitecture in mammalian basal ganglia. Peroxidase immunohistochemical and Golgi impregnation/gold toning methods were combined to doubly label the tachykinin neuromodulator signature and somatodendritic structure of neostriatal neurons in late fetal, postnatal and adult cats. The results supported 3 conclusions of considerable significance. (1) Colocalization of immunohistochemical and Golgi impregnation/gold toning labels is a feasible, rational and productive means to identify and determine the somatodendritic morphogenesis of tachykinin neurons. (2) The application of this method to developing feline neostriatum demonstrates directly that the principal tachykinin cells are medium-sized spiny neurons, which undergo progressive growth and elaboration of cell bodies, dendritic arbors and dendritic spines during the late fetal and postnatal periods. (3) There is a strong but incomplete concordance between tachykinin and medium-sized spiny neuronal phenotypes, because a minor variant of medium-sized spiny neurons and rare subgroups of medium- and large-sized sparse spiny neurons also show the tachykinin neuromodulator signature. Taken together, these results suggest that neostriatal neurons show an early commitment to heterogeneous tachykinin phenotypes, although the full and final expression of their somatodendritic characteristics coincides with synaptogenesis.

Download full-text


Available from: Robin S. Fisher
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior studies suggest that non-canonical proteolipid protein (PLP) gene expression occurs during development in non-myelinating neurons as well as myelinating oligodendroglia in mammalian brain. To assess this possibility in neostriatum, a region of uncertain PLP gene expression in neurons, morphological and electrophysiological tools were used to determine phenotypes of cells with activation of a PLP promoter transgene during the early postnatal period in mice. PLP gene expression is evident in both neuronal and oligodendroglial phenotypes in developing neostriatum, a conclusion based on three novel observations: (1) An enhanced green fluorescent protein (EGFP) reporter of PLP promoter activation was localized in two distinct populations of cells, which exhibit collective, developmental differences of morphological and electrophysiological characteristics in accord with neuronal and oligodendroglial phenotypes of neostriatal cells found during the early postnatal period in both transgenic and wild-type mice. (2) The EGFP reporter of PLP promoter activation was appropriately positioned to serve as a regulator of PLP gene expression. It colocalized with native PLP proteins in both neuronal and oligodendroglial phenotypes; however, only soma-restricted PLP protein isoforms were found in the neuronal phenotype, while classic and soma-restricted PLP protein isoforms were found in the oligodendroglial phenotype. (3) As shown by EGFP reporter, PLP promoter activation was placed to regulate PLP gene expression in only one neuronal phenotype among the several that constitute neostriatum. It was localized in medium spiny neurons, but not large aspiny neurons. These outcomes have significant implications for the non-canonical functional roles of PLP gene expression in addition to myelinogenesis in mammalian brain, and are consistent with potentially independent pathologic loci in neurons during the course of human mutational disorders of PLP gene expression.
    Full-text · Article · Sep 2011 · Developmental Neuroscience