Article

Complete genome sequence of Saccharomonospora viridis type strain (P101T)

Standards in Genomic Sciences (Impact Factor: 3.17). 09/2009; 1(2):141-9. DOI: 10.4056/sigs.20263
Source: PubMed

ABSTRACT

Saccharomonospora viridis (Schuurmans et al. 1956) Nonomurea and Ohara 1971 is the type species of the genus Saccharomonospora which belongs to the family Pseudonocardiaceae. S. viridis is of interest because it is a Gram-negative organism classified among the usually Gram-positive actinomycetes. Members of the species are frequently found in hot compost and hay, and its spores can cause farmer's lung disease, bagassosis, and humidifier fever. Strains of the species S. viridis have been found to metabolize the xenobiotic pentachlorophenol (PCP). The strain described in this study has been isolated from peat-bog in Ireland. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the family Pseudonocardiaceae, and the 4,308,349 bp long single replicon genome with its 3906 protein-coding and 64 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

Download full-text

Full-text

Available from: Patrik D'haeseleer
  • Source
    • "Streptomyces species are prolific producers of antibiotics and other related secondary metabolites (Martín et al. 2000; Bérdy 2012). The availability of an increasing number of genome sequences of species of Streptomyces (Pati et al. 2009; Ikeda "
    [Show abstract] [Hide abstract]
    ABSTRACT: Clusters for clavulanic acid (CA) biosynthesis are present in the actinomycetes Streptomyces flavogriseus ATCC 33331 and Saccharomonospora viridis DSM 43017. These clusters, which are silent, contain blocks of conserved genes in the same order as those of the Streptomyces clavuligerus CA cluster but assembled in a different organization. S. flavogriseus was grown in nine different media, but clavulanic acid production was undetectable using bioassays or by high-performance liquid chromatography analyses. Reverse-transcriptase polymerase chain reaction (RT-PCR) of S. flavogriseus CA biosynthesis genes showed that the regulatory genes ccaR and claR and some biosynthetic genes were expressed whereas expression of cyp, orf12, orf13, and oppA2 was undetectable. The ccaR gene of S. clavuligerus was unable to switch on CA production in S. flavogriseus::[Pfur-ccaR C], but insertion of a cosmid carrying the S. clavuligerus CA cluster (not including the ccaR gene) conferred clavulanic acid production on S. flavogriseus::[SCos-CA] particularly in TBO and YEME media; these results suggests that some of the S. flavogriseus CA genes are inactive. The known heptameric sequences recognized by CcaR in S. clavuligerus are poorly or not conserved in S. flavogriseus. Quantitative RT-PCR analysis of the CA gene clusters of S. clavuligerus and S. flavogriseus showed that the average expression value of the expressed genes in the former strain was in the order of 1.68-fold higher than in the later. The absence of CA production by S. flavogriseus can be traced to the lack of expression of the essential genes cyp, orf12, orf13, orf14, and oppA2. Heterologous expression of S. clavuligerus CA gene cluster in S. flavogriseus::[SCos-CA] was 11- to 14-fold lower than in the parental strain, suggesting that the genetic background of the host strain is important for optimal production of CA in Streptomyces.
    Full-text · Article · Aug 2013 · Applied Microbiology and Biotechnology
  • Source
    • "S. marina and the other type strains of the genus Saccharomonospora were selected for genome sequencing in one of the DOE Community Sequencing Projects (CSP 312) at Joint Genome Institute (JGI), because members of the genus (which originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist, over-heated grain and ocean sediment) might play a role in the primary degradation of plant material by attacking hemicellulose. This expectation was underpinned by the results of the analysis of the genome of S. viridis [4], one of the recently sequenced GEBA genomes [5]. The S. viridis genome, the first sequenced genome from the genus Saccharomonospora, contained an unusually large number (24 in total) genes for glycosyl hydrolases (GH) belonging to 14 GH families, which were identified in the Carbon Active Enzyme Database [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Saccharomonospora marina Liu et al. 2010 is a member of the genus Saccharomonospora, in the family Pseudonocardiaceae that is poorly characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they might play a role in the primary degradation of plant material by attacking hemicellulose. Organisms belonging to the genus are usually Gram-positive staining, non-acid fast, and classify among the actinomycetes. Here we describe the features of this organism, together with the complete genome sequence (permanent draft status), and annotation. The 5,965,593 bp long chromosome with its 5,727 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
    Full-text · Article · May 2012 · Standards in Genomic Sciences
  • Source
    • "S. azurea and the other type strains of the genus Saccharomonospora were selected for genome sequencing in a DOE Community Sequencing Project (CSP 312) at Joint Genome Institute (JGI), because members of the genus (which originate from diverse habitats, such as leaf litter, manure, compost, surface of peat, moist and over-heated grain) might play a role in the primary degradation of plant material by attacking hemicellulose. This expectation was underpinned by the results of the analysis of the genome of S. viridis [8], one of the recently sequenced GEBA genomes [9]. The S. viridis genome, the only sequenced genome from the genus Saccharomonospora to date, contained an unusually large number (24) of genes for glycosyl hydrolases (GH) belonging to 14 GH families, which were identified in the Carbon Active Enzyme Database [10]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
    Full-text · Article · May 2012 · Standards in Genomic Sciences
Show more