Inorganic Nanoparticles for Multimodal Molecular Imaging

ArticleinMolecular Imaging 10(1):3-16 · February 2011with6 Reads
Impact Factor: 1.96 · DOI: 10.2310/7290.2011.00001 · Source: PubMed

Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

    • "Thus, it is likely that both soluble factors and costimulatory molecules play critical roles in particle-mediated monocyte-endothelial cell interactions, and further investigations are required to support this hypothesis. Metal and silica particles (SiO 2 particles) are among the most promising inorganic particles being developed for target therapy or molecular imaging161718. Thus, Fe 3 O 4 and SiO 2 particles were chosen as test materials in the present study. "
    [Show abstract] [Hide abstract] ABSTRACT: Background Inorganic particles, such as drug carriers or contrast agents, are often introduced into the vascular system. Many key components of the in vivo vascular environment include monocyte-endothelial cell interactions, which are important in the initiation of cardiovascular disease. To better understand the effect of particles on vascular function, the present study explored the direct biological effects of particles on human umbilical vein endothelial cells (HUVECs) and monocytes (THP-1 cells). In addition, the integrated effects and possible mechanism of particle-mediated monocyte-endothelial cell interactions were investigated using a coculture model of HUVECs and THP-1 cells. Fe3O4 and SiO2 particles were chosen as the test materials in the present study. Results The cell viability data from an MTS assay showed that exposure to Fe3O4 or SiO2 particles at concentrations of 200 μg/mL and above significantly decreased the cell viability of HUVECs, but no significant loss in viability was observed in the THP-1 cells. TEM images indicated that with the accumulation of SiO2 particles in the cells, the size, structure and morphology of the lysosomes significantly changed in HUVECs, whereas the lysosomes of THP-1 cells were not altered. Our results showed that reactive oxygen species (ROS) generation; the production of interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor (TNF)-α and IL-1β; and the expression of CD106, CD62E and tissue factor in HUVECs and monocytes were significantly enhanced to a greater degree in the SiO2-particle-activated cocultures compared with the individual cell types alone. In contrast, exposure to Fe3O4 particles had no impact on the activation of monocytes or endothelial cells in monoculture or coculture. Moreover, using treatment with the supernatants of SiO2-particle-stimulated monocytes or HUVECs, we found that the enhancement of proinflammatory response by SiO2 particles was not mediated by soluble factors but was dependent on the direct contact between monocytes and HUVECs. Furthermore, flow cytometry analysis showed that SiO2 particles could markedly increase CD40L expression in HUVECs. Our data also demonstrated that the stimulation of cocultures with SiO2 particles strongly enhanced c-Jun NH2-terminal kinase (JNK) phosphorylation and NF-κB activation in both HUVECs and THP-1 cells, whereas the phosphorylation of p38 was not affected. Conclusions Our data demonstrate that SiO2 particles can significantly augment proinflammatory and procoagulant responses through CD40–CD40L-mediated monocyte-endothelial cell interactions via the JNK/NF-κB pathway, which suggests that cooperative interactions between particles, endothelial cells, and monocytes may trigger or exacerbate cardiovascular dysfunction and disease, such as atherosclerosis and thrombosis. These findings also indicate that the monocyte-endothelial cocultures represent a sensitive in vitro model system to assess the potential toxicity of particles and provide useful information that may help guide the future design and use of inorganic particles in biomedical applications.
    Full-text · Article · Sep 2012 · Particle and Fibre Toxicology
  • [Show abstract] [Hide abstract] ABSTRACT: Enormous efforts have been made toward the translation of nanotechnology into medical practice, including cancer management. Generally the applications have fallen into two categories: diagnosis and therapy. Because the targets are often the same, the development of separate approaches can miss opportunities to improve efficiency and effectiveness. The unique physical properties of nanomaterials enable them to serve as the basis for superior imaging probes to locate and report cancerous lesions and as vehicles to deliver therapeutics preferentially to those lesions. These technologies for probes and vehicles have converged in the current efforts to develop nanotheranostics, nanoplatforms with both imaging and therapeutic functionalities. These new multimodal platforms are highly versatile and valuable components of the emerging trend toward personalized medicine, which emphasizes tailoring treatments to the biology of individual patients to optimize outcomes. The close coupling of imaging and treatment within a theranostic agent and the data about the evolving course of an illness that these agents provide can facilitate informed decisions about modifications to treatment. Magnetic nanoparticles, especially superparamagnetic iron oxide nanoparticles (IONPs), have long been studied as contrast agents for magnetic resonance imaging (MRI). Owing to recent progress in synthesis and surface modification, many new avenues have opened for this class of biomaterials. Such nanoparticles are not merely tiny magnetic crystals, but potential platforms with large surface-to-volume ratios. By taking advantage of the well-developed surface chemistry of these materials, researchers can load a wide range of functionalities, such as targeting, imaging and therapeutic features, onto their surfaces. This versatility makes magnetic nanoparticles excellent scaffolds for the construction of theranostic agents, and many efforts have been launched toward this goal. In this Account, we introduce the surface engineering techniques that we and others have developed, with an emphasis on how these techniques affect the role of nanoparticles as imaging or therapeutic agents. We and others have developed a set of chemical methods to prepare magnetic nanoparticles that possess accurate sizes, shapes, compositions, magnetizations, relaxivities, and surface charges. These features, in turn, can be harnessed to adjust the toxicity and stability of the nanoparticles and, further, to load functionalities, via various mechanisms, onto the nanoparticle surfaces.
    Preview · Article · May 2011 · Accounts of Chemical Research
    Jin Xie Jin Xie Gang Liu Gang Liu Henry S Eden Henry S Eden +1 more author... Hua Ai Hua Ai
  • [Show abstract] [Hide abstract] ABSTRACT: Fluorine-19-DNA-functionalized gold nanoparticles ( 19F-DNA AuNPs) are demonstrated to provide a 19F-NMR off-on switch in response to target-specific DNA hybridization events. AuNP-bound 19F-DNA produces a low intensity signal that is undetectable above background. Upon complementary DNA hybridization and subsequent 19F-DNA release, the 19F-NMR signal becomes detectable. This method has the potential to be used both in vitro and in vivo to non-invasively detect and image specific nucleic acid binding events of interest.
    No preview · Article · Jul 2011 · Small
Show more