Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The ability of gut microbiota to communicate with the brain and thus modulate behavior is emerging as an exciting concept in health and disease. The enteric microbiota interacts with the host to form essential relationships that govern homeostasis. Despite the unique enteric bacterial fingerprint of each individual, there appears to be a certain balance that confers health benefits. It is, therefore, reasonable to note that a decrease in the desirable gastrointestinal bacteria will lead to deterioration in gastrointestinal, neuroendocrine or immune relationships and ultimately disease. Therefore, studies focusing on the impact of enteric microbiota on the host and in particular on the central nervous system are essential to our understanding of the influence of this system. Recent studies published in this Journal demonstrate that germ-free mice display alterations in stress-responsivity, central neurochemistry and behavior indicative of a reduction in anxiety in comparison to conventional mice. Such data offer the enticing proposition that specific modulation of the enteric microbiota may be a useful strategy for stress-related disorders and for modulating the co-morbid aspects of gastrointestinal disorders such as irritable bowel syndrome and inflammatory bowel disease.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... NNT 11.4 [5.8-200.7]. Additionally, there was a statistically significant reduction in the intensive care length of stay in the probiotic cohort 9 [6][7][8][9][10][11][12][13][14][15] vs 14 [7-41.5] days (p < 0.001). ...
... When centring on the explanations of the effect of probiotics on the neurodevelopment, the existence of the brain-gut axis has been proven to be of paramount importance [9][10][11] . Dysbiosis can contribute to the increase of gut permeability causing a rise in bacterial translocation and LPS, directly implicated in chronic inflammation, leading to an upscaling of pro-inflammatory cytokines such as interleukine-6 and tumour necrosis factor α and subsequent cortisol activation 10,11,13 . ...
... When centring on the explanations of the effect of probiotics on the neurodevelopment, the existence of the brain-gut axis has been proven to be of paramount importance [9][10][11] . Dysbiosis can contribute to the increase of gut permeability causing a rise in bacterial translocation and LPS, directly implicated in chronic inflammation, leading to an upscaling of pro-inflammatory cytokines such as interleukine-6 and tumour necrosis factor α and subsequent cortisol activation 10,11,13 . Lactobacillus helveticus combined with Bifidobacterium longum have shown a decrease in hippocampal apoptosis in rats exposed to LPS 37 , as well as reducing serum cortisol -main stress hormone-levels in humans and rats 38 . ...
Article
Full-text available
Probiotics have shown a benefit in reducing necrotising enterocolitis in the premature infant, however the study of their effect on premature neonates’ neurodevelopment is limited. The aim of our study was to elucidate whether the effect of Bifidobacterium bifidum NCDO 2203 combined with Lactobacillus acidophilus NCDO 1748 could positively impact the neurodevelopment of the preterm neonates. Quasi-experimental comparative study with a combined treatment of probiotics in premature infants < 32 weeks and < 1500 g birth weight, cared for at a level III neonatal unit. The probiotic combination was administered orally to neonates surviving beyond 7 days of life, until 34 weeks postmenstrual age or discharge. Globally, neurodevelopment was evaluated at 24 months corrected age. A total of 233 neonates were recruited, 109 in the probiotic group and 124 in the non-probiotic group. In those neonates receiving probiotics, there was a significant reduction in neurodevelopment impairment at 2 years of age RR 0.30 [0.16–0.58], and a reduction in the degree of impairment (normal-mild vs moderate-severe, RR 0.22 [0.07–0.73]). Additionally, there was a significant reduction in late-onset sepsis (RR 0.45 [0.21–0.99]). The prophylactic use of this probiotic combination contributed to improving neurodevelopmental outcome and reduced sepsis in neonates born at < 32 weeks and < 1500 g.Per style, a structured abstract is not allowed so we have changed the structured abstract to an unstructured abstract. Please check and confirm.Accepted
... The indigenous microbiota of the human is known to be closely associated with various physiological functions, with the gastrointestinal (GI) microbiota in particular playing a prominent role in the protection against infection (1,2), in the digestion of food (3), or in the production of neurotransmitters (4). There is also evidence that intestinal microbes affect energy metabolism (5), intestinal epithelial proliferation (6) and immune response in the host (1). ...
... A Soviet space station. 2 Gravity simulation.3 Oxygen chamber has an oxygen content of 70%, a helium content of 30%.4 Experimental project of a closed ecosystem. ...
Article
Full-text available
Purpose The gastrointestinal (GI) microbiota is a complex and dynamic ecosystem whose composition and function are influenced by many internal and external factors. Overall, the individual GI microbiota composition appears to be rather stable but can be influenced by extreme shifts in environmental exposures. To date, there is no systematic literature review that examines the effects of extreme environmental conditions, such as strict isolation and confinement, on the GI microbiota. Methods We conducted a systematic review to examine the effects of isolated and confined environments on the human GI microbiota. The literature search was conducted according to PRISMA criteria using PubMed, Web of Science and Cochrane Library. Relevant studies were identified based on exposure to isolated and confined environments, generally being also antigen-limited, for a minimum of 28 days and classified according to the microbiota analysis method (cultivation- or molecular based approaches) and the isolation habitat (space, space- or microgravity simulation such as MARS-500 or natural isolation such as Antarctica). Microbial shifts in abundance, alpha diversity and community structure in response to isolation were assessed. Results Regardless of the study habitat, inconsistent shifts in abundance of 40 different genera, mainly in the phylum Bacillota (formerly Firmicutes) were reported. Overall, the heterogeneity of studies was high. Reducing heterogeneity was neither possible by differentiating the microbiota analysis methods nor by subgrouping according to the isolation habitat. Alpha diversity evolved non-specifically, whereas the microbial community structure remained dissimilar despite partial convergence. The GI ecosystem returned to baseline levels following exposure, showing resilience irrespective of the experiment length. Conclusion An isolated and confined environment has a considerable impact on the GI microbiota composition in terms of diversity and relative abundances of dominant taxa. However, due to a limited number of studies with rather small sample sizes, it is important to approach an in-depth conclusion with caution, and results should be considered as a preliminary trend. The risk of dysbiosis and associated diseases should be considered when planning future projects in extreme environments. Systematic review registration https://www.crd.york.ac.uk/prospero/ , identifier CRD42022357589.
... Animal models are frequently used as translational frameworks to investigate the role of the gut-brain axis in biobehavioural phenomena that may be of relevance for neuropsychiatric illness (1)(2)(3). Deer mice represent a useful animal model of obsessive-compulsive-like behavioural persistence (4). Recently, gut dysbiosis has been associated with compulsive-like large nesting behaviour in this animal (5). ...
Preprint
Full-text available
Background: Animal models are valuable tools to investigate contributions of the gut microbiota to human disorders. Deer mice are studied for their expression of obsessive-compulsive-like behaviour, which has recently been associated with gut dysbiosis in this model. To this end, sterilisation of the gut microbiota by means of orally administered antibiotic cocktails, is a common procedure when studying the pathological role of dysbiosis. Methods: In this case report, we refer to six unexpected mortalities after exposing 26 adult deer mice (Peromyscus maniculatus bairdii) of both sexes to a gut sterilising regimen that consisted of ampicillin, vancomycin, imipenem, gentamycin, and amphotericin B. Results and conclusion: We recorded fatal bleeding episodes in four male and two female mice. While vancomycin is suspected to be the main agent of concern, future studies are needed to divulge the underlying mechanisms that resulted in the reported deaths.
... The gut-brain axis (GBA), a bidirectional communication pathway between the gut and the brain is important for maintaining homeostasis and is regulated at the neural (both the central and enteric nervous systems), hormonal and immunological levels (Carabotti et al., 2015). Perturbations of signalling pathways in this system can alter stress-response with resultant behavioural deficits (Cryan and O'Mahony, 2011). The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease (Thursby and Juge, 2017). ...
Article
Ketamine is an anaesthetic known to have short but rapid-acting anti-depressant effects; however, the neurobehavioural effects of its prolonged use and its role on the oxytocin system in the gut-brain axis are largely undetermined. Female BALB/c mice were either exposed to the chronic unpredictable mild stress (CUMS) paradigm for 21 days and then treated with ketamine in four doses for 14 days or exposed to CUMS and treated simultaneously in four doses of ketamine during the last two weeks of CUMS exposure. After each dose, the forced swim test was conducted to assess depressive-like behaviour. Before sacrifice, all the mice were subjected to behavioural tests to assess anxiety, memory, and social interaction. Prolonged treatment of depression with ketamine did not rescue depressive-like behaviour. It did, however, improve depression-associated anxiety-like behaviours, short-term memory and social interaction deficits when compared to the stressed untreated mice. Furthermore, ketamine treatment enhanced plasma oxytocin levels, expression of oxytocin receptors; as well as abrogated nitro-oxidative stress biomarkers in the intestinal and hippocampal tissues. Taken together, our findings indicate that while short-term use of ketamine has anti-depressant benefits, its prolonged therapeutic use does not seem to adequately resolve depressive-like behaviour in mice.
... The microbiota gut-brain axis (mGBA) is now recognized as an important contributor to a number of mental health conditions including neurodegenerative and mood disorders [1][2][3]. A dysbiotic intestinal microbial community [4,5] and a dysfunctional diverse profile of beneficial components, flaxseed may serve as a dietary intervention for improved mental health through modulation of the mGBA. ...
Article
Full-text available
The microbiota gut–brain axis (mGBA) is an important contributor to mental health and neurological and mood disorders. Lipopolysaccharides (LPS) are endotoxins that are components of Gram-negative bacteria cell walls and have been widely shown to induce both systemic and neuro-inflammation. Flaxseed (Linum usitatissimum) is an oilseed rich in fibre, n3-poly-unsaturated fatty acid (alpha-linolenic acid (ALA)), and lignan, secoisolariciresinol diglucoside, which all can induce beneficial effects across varying aspects of the mGBA. The objective of this study was to determine the potential for dietary supplementation with flaxseed or flaxseed oil to attenuate LPS-induced inflammation through modulation of the mGBA. In this study, 72 5-week-old male C57Bl/6 mice were fed one of three isocaloric diets for 3 weeks: (1) AIN-93G basal diet (BD), (2) BD + 10% flaxseed (FS), or (3) BD + 4% FS oil (FO). Mice were then injected with LPS (1 mg/kg i.p) or saline (n = 12/group) and samples were collected 24 h post-injection. Dietary supplementation with FS, but not FO, partially attenuated LPS-induced systemic (serum TNF-α and IL-10) and neuro-inflammation (hippocampal and/or medial prefrontal cortex IL-10, TNF-α, IL-1β mRNA expression), but had no effect on sickness and nest-building behaviours. FS-fed mice had enhanced fecal microbial diversity with increased relative abundance of beneficial microbial groups (i.e., Lachnospiraceae, Bifidobacterium, Coriobacteriaceae), reduced Akkermansia muciniphila, and increased production of short-chain fatty acids (SCFAs), which may play a role in its anti-inflammatory response. Overall, this study highlights the potential for flaxseed to attenuate LPS-induced inflammation, in part through modulation of the intestinal microbiota, an effect which may not be solely driven by its ALA-rich oil component.
... Энтеральную часть оси кишечник-мозг составляют 100 млн нервных клеток кишечника, что позволяет ей действовать как связующее звено между внешней средой и ЦНС. Общий вес кишечных микро организмов взрослого человека достигает 1,5-2 кг, что, учитывая их роль в физиологии организма, делает кишечную микробиоту одним из самых крупных «органов» [8,9]. ...
... In addition to its effects on adipose tissue, intestinal epithelium, and muscle, the gut microbiota interacts with other physiological targets and organs during the development of obesity. The gut microbiota is reportedly involved in the regulation of the hypothalamicpituitary-adrenal axis, a key factor in energy balance and metabolism [139]. This axis is regulated by a complex network of signaling pathways involving the central nervous system, gut microbiota, and other peripheral tissues, including the liver and adipose tissue. ...
Article
Full-text available
Obesity is an increasingly serious global health problem. Some studies have revealed that the gut microbiota and its metabolites make important contributions to the onset of obesity. The gut microbiota is a dynamic ecosystem composed of diverse microbial communities with key regulatory functions in host metabolism and energy balance. Disruption of the gut microbiota can result in obesity, a chronic metabolic condition characterized by the excessive accumulation of adipose tissue. Host tissues (e.g., adipose, intestinal epithelial, and muscle tissues) can modulate the gut microbiota via microenvironmental interactions that involve hormone and cytokine secretion, changes in nutrient availability, and modifications of the gut environment. The interactions between host tissues and the gut microbiota are complex and bidirectional, with important effects on host health and obesity. This review provides a comprehensive summary of gut microbiota changes associated with obesity, the functional roles of gut microbiota-derived metabolites, and the importance of the complex interactions between the gut microbiota and target tissues in the pathogenesis of obesity. It places particular emphasis on the roles of adipose tissue microenvironment interactions in the onset of obesity.
... Raised since about a decade ago, the concept of 'microbiota-gutbrain axis' , which provides bidirectional communication pathways between the gut and the brain (Cryan and O'Mahony, 2011;Sherwin et al., 2018), has linked dysbiosis of intestinal microbiota to pathogenesis of diseases of the central nervous system (CNS). This brings new insights into the understanding of disease mechanisms, and the development of biomarkers and potential treatments of these debilitating diseases. ...
Article
Full-text available
The gut microbiota varies dramatically among individuals, and changes over time within the same individual, due to diversities in genetic backgrounds, diet, nutrient supplementations and use of antibiotics. Up until now, studies on dysbiosis of microbiota have expanded to a wider range of diseases, with Akkermansia muciniphila at the cross spot of many of these diseases. A. muciniphila is a Gram-negative bacterium that produces short-chain fatty acids (SCFAs), and Amuc_1100 is one of its most highly expressed outer membrane proteins. This review aims to summarize current knowledge on correlations between A. muciniphila and involved neuropsychological diseases published in the last decade, with a focus on the potential of this bacterium and its outer membrane proteins as therapeutic targets for these diseases, on the basis of evidence accumulated from animal and clinical studies, as well as mechanisms of action from peripheral to central nervous system (CNS).
... Antimicrobial treatment can be applied to induce microbiome perturbation under controlled conditions. It can therefore be used in animals as a methodological tool to evaluate the effects of the gut microbiota on behavior [16,56]. In mice and rats, antibiotic administration in early life [57][58][59], adolescence [60], and adulthood [61][62][63] has been well studied and shown to alter many factors, including hormone levels, gene expression, anxiety-related responses, exploratory and social behaviors, and cognitive functions [22]. ...
Article
Full-text available
The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by an antibiotic (ATB)-induced dysbiosis in early adulthood could induce neurodevelopmental disorders-like behavioral changes in adult male rats. Combining these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats' hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyses showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.
... The HPA axis is a feedback pathway consisting of the hypothalamus, pituitary, and adrenal glands and is involved in the control of the stress response. The HPA axis is an important component of the MGB interaction (Cryan and O'mahony, 2011;Frankiensztajn et al., 2020). Under normal conditions, environmental, emotional, and physiological stressors increase the systemic levels of pro-inflammatory cytokines, which in turn secrete corticotropin-releasing hormone (CRH) by triggering secretion from the paraventricular nucleus of the hypothalamus. ...
Article
Full-text available
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
... BGM is crucial in maintaining a proper homeostasis, and several psychiatric and nonpsychiatric illnesses have been proved to be at least in part responsible its dysfunction [28][29][30]. It should also be noted that, in addition to diseases, the composition and diversity of the gut microbiota can be affected by drugs used to treat the disorder, especially antibiotics. ...
Article
Full-text available
The aim of the study was to assess the effect of long-term administration of natural prebiotics: Jerusalem artichoke (topinambur, TPB) and inulin (INU) as well as one of the most popular antidepressants, fluoxetine (FLU), on the proliferation of neural stem cells, learning and memory functions, and the composition of the intestinal microbiota in mice. Cognitive functions were assessed using the Morris Water Maze (MWM)Test. Cells were counted using a confocal microscope and ImageJ software. We performed 16S rRNA sequencing to assess changes in the gut microbiome of the mice. The obtained results showed that the 10-week supplementation with TPB (250 mg/kg) and INU (66 mg/kg) stimulates the growth of probiotic bacteria, does not affect the learning and memory process, and does not disturb the proliferation of neural stem cells in the tested animals. Based on this data, we can assume that both TPB and INU seem to be safe for the proper course of neurogenesis. However, 2-week administration of FLU confirmed an inhibitory impact on Lactobacillus growth and negatively affected behavioral function and neurogenesis in healthy animals. The above studies suggest that the natural prebiotics TPB and INU, as natural supplements, may have the potential to enrich the diversity of intestinal microbiota, which may be beneficial for the BGM axis, cognitive functions, and neurogenesis.
... For example, some reports reviewed below show concentrations of these elements in the gut where they can affect the microbiome. Several studies have reported that disturbance of the gut microbiome has a significant impact on learning and memory performance, anxiety and depression-like behaviours in rodents (Cryan and O'Mahony, 2011;Desbonnet et al., 2015;Foster and McVey Neufeld, 2013;Fr€ ohlich et al., 2016;Gareau et al., 2011;Li et al., 2009;Luczynski et al., 2016). Further, immune activation has been reported to alter rodents' performance on a learning and memory tasks (Donzis and Tronson, 2014;Huang et al., 2013;Mallon et al., 2003;Yirmiya and Goshen, 2011). ...
... reuteri-treated relative to HK-treated female, but not male voles, along with the sex-specific effects seen in neurochemical marker expression and microbiome composition (see below) is intriguing, as sex-specific neurochemical regulation of social behaviors have been reported in prairie voles (DeVries et al., 1995;Cho et al., 1999) as well as in rats and mice Kopec et al., 2018;Rigney et al., 2020). Although L. reuteri treatment has also been shown to alter stress-related behaviors in other species (Cryan and O'Mahony, 2011;Marin et al., 2017), we found no effects of L. reuteri on anxiety-like behavior in the present study. These data further indicate that L. reuteri can affect behaviors in a species-and behavior-specific manner. ...
Article
Full-text available
Research on the role of gut microbiota in behavior has grown dramatically. The probiotic L. reuteri can alter social and stress-related behaviors – yet, the underlying mechanisms remain largely unknown. Although traditional laboratory rodents provide a foundation for examining the role of L. reuteri on the gut-brain axis, they do not naturally display a wide variety of social behaviors. Using the highly-social, monogamous prairie vole (Microtus ochrogaster), we examined the effects of L. reuteri administration on behaviors, neurochemical marker expression, and gut-microbiome composition. Females, but not males, treated with live L. reuteri displayed lower levels of social affiliation compared to those treated with heat-killed L. reuteri. Overall, females displayed a lower level of anxiety-like behaviors than males. Live L. reuteri-treated females had lower expression of corticotrophin releasing factor (CRF) and CRF type-2-receptor in the nucleus accumbens, and lower vasopressin 1a-receptor in the paraventricular nucleus of the hypothalamus (PVN), but increased CRF in the PVN. There were both baseline sex differences and sex-by-treatment differences in gut microbiome composition. Live L. reuteri increased the abundance of several taxa, including Enterobacteriaceae, Lachnospiraceae NK4A136, and Treponema. Interestingly, heat-killed L. reuteri increased abundance of the beneficial taxa Bifidobacteriaceae and Blautia. There were significant correlations between changes in microbiota, brain neurochemical markers, and behaviors. Our data indicate that L. reuteri impacts gut microbiota, gut-brain axis and behaviors in a sex-specific manner in socially-monogamous prairie voles. This demonstrates the utility of the prairie vole model for further examining causal impacts of microbiome on brain and behavior.
... Urolithin A thus has properties that would also be beneficial in the treatment of IVDD and LBP. The gut microbiome-IVD axis proposed by Li et al.348 and Rajasekaran et al.349 may serve as an intrinsic delivery system that could be utilized to deliver efficacious gut metabolites such as urolithin A to the IVD in a similar manner to how bioactive gut metabolites are transported by the gut brain axis.[350][351][352] This also gives some credibility to the consumption of diets enriched in probiotic compounds as a potential therapeutic option to promote tissue repair.This proposal warrants further investigation. ...
Article
Full-text available
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti‐oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain‐relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration. Animal models of IVD deneration have yielded invaluable information on the pathobiology of this degenerative condition and identified prospective therapeutic targets.The complexity of the degenerative changes and multiple therapeutic targets identified by these models suggests artificial intelligence methodology may be required to unravel these complexities and provide a rationale way forward in the development of effective repair strategies.
... In addition to coordinating and integrating gastrointestinal functions, it also connects the brain and peripheral functions [12]. Many reactions occur in these processes, such as the activation of immune responses, the protection of intestinal permeability, and the transmission of gastrointestinal-endocrine signals [13]. The gut microbiota is currently recognized as a key regulator of a smooth two-way dialogue between the gut and the brain (gut-brain axis). ...
Article
Full-text available
With the increase in human mean age, the prevalence of neurodegenerative diseases (NDs) also rises. This negatively affects mental and physiological health. In recent years, evidence has revealed that anthocyanins could regulate the functioning of the central nervous system (CNS) through the microbiome-gut-brain axis, which provides a new perspective for treating NDs. In this review, the protective effects and mechanisms of anthocyanins against NDs are summarized, especially the interaction between anthocyanins and the intestinal microbiota, and the microbial-intestinal-brain axis system is comprehensively discussed. Moreover, anthocyanins achieve the therapeutic purpose of NDs by regulating intestinal microflora and certain metabolites (protocateic acid, vanillic acid, etc.). In particular, the inhibitory effect of tryptophan metabolism on some neurotransmitters and the induction of blood-brain barrier permeability by butyrate production has a preventive effect on NDs. Overall, it is suggested that microbial-intestinal-brain axis may be a novel mechanism for the protective effect of anthocyanins against NDs.
... The second hit can include secondary immune challenge [41], different kind of stress [30,44,45] or gut dysbiosis induced by antibiotics [11,46]. Antimicrobial treatment can be applied to induce microbiome perturbation under controlled conditions and can therefore be used in animals as a methodological tool to evaluate the effects of the gut microbiota on behavior [14,47]. In mice and rats, antibiotic administration in early life [48][49][50], adolescence [51] and adulthood [52][53][54] has been well studied and shown to alter many factors, including hormone levels, gene expression, anxiety-related responses, exploratory and social behaviors, and cognitive functions. ...
Preprint
Full-text available
The present study investigated whether neonatal exposure to the proinflammatory endotoxin lipopolysaccharide (LPS) followed by antibiotic (ATB)-induced dysbiosis in early adulthood could induce schizophrenia-like behavioral changes in adult male rats. The combination of these two stressors resulted in decreased weight gain, but no significant behavioral abnormalities were observed. LPS treatment resulted in adult rats hypoactivity and induced anxiety-like behavior in the social recognition paradigm, but these behavioral changes were not exacerbated by ATB-induced gut dysbiosis. ATB treatment seriously disrupted the gut bacterial community, but dysbiosis did not affect locomotor activity, social recognition, and acoustic reactivity in adult rats. Fecal bacterial community analyzes showed no differences between the LPS challenge exposed/unexposed rats, while the effect of ATB administration was decisive regardless of prior LPS exposure. ATB treatment resulted in significantly decreased bacterial diversity, suppression of Clostridiales and Bacteroidales, and increases in Lactobacillales, Enterobacteriales, and Burkholderiales. The persistent effect of LPS on some aspects of behavior suggests a long-term effect of early toxin exposure that was not observed in ATB-treated animals. However, an anti-inflammatory protective effect of ATB cannot be assumed because of the increased abundance of pro-inflammatory, potentially pathogenic bacteria (Proteus, Suttrella) and the elimination of the bacterial families Ruminococcaceae and Lachnospiraceae, which are generally considered beneficial for gut health.
Article
Full-text available
The study aims to understand how one of the adverse childhood experiences called emotional neglect could contribute to inflammatory bowel diseases like Crohn's disease (CD) and ulcerative colitis (UC) in adulthood. Amongst the contributory psychological factors of having IBD is said to be depression and anxiety which might be due to childhood adversity that occurs at a time that is crucial for the development of neurobiological and immunological factors. It has been hypothesized that specific life stress events may contribute to the development of inflammatory bowel disease (IBD) (Hana Bednarikova et al, 2021). The specific changes in brain functioning might directly or indirectly affect the level of brain chemicals that helps in immune functioning, therefore, leading to an imbalance in the gut-brain axis. The association between ACE and IBDs is also shown to be bidirectional (Kelcie Witges et al., 2019). One of the reasons for the study is the increasing prevalence of IBD globally. According to a survey done by S Altab et al., the global prevalence of IBD cases has increased by 85.1% from 1990 to 2017. Additionally, the impact of emotional neglect in childhood on these diseases is still being researched. Therefore, the following review paper will try to focus on the direct relationship between emotionally neglectful childhood and inflammatory bowel disease in adulthood.
Article
Increasing research links the gut microbiome to neurodegenerative disorders. The gut microbiome communicates with the central nervous system via the gut–brain axis and affects behavioral and cognitive phenotypes. Dysbiosis (a dysfunctional microbiome) drives increased intestinal permeability and inflammation that can negatively affect the brain via the gut–brain axis. Healthier metabolic and lipid profiles and cognitive phenotypes are observed in individuals with more distinct microbiomes. In this review, we discuss the role of the gut microbiome and gut–brain axis in neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease and related animal models, in cancer and cancer treatments, and in metabolic syndrome. We also discuss strategies to improve the gut microbiome and ultimately brain function. Because healthier cognitive phenotypes are observed in individuals with more distinct microbiomes, increased efforts are warranted to develop therapeutic strategies for those at increased risk of developing neurological disorders and patients diagnosed with those disorders.
Article
Recent research has highlighted the key role of gut microbiota in the development of psychiatric disorders. The adverse impact of stress, anxiety, and depression has been well documented on the commensal gut microflora. Thus, the therapeutic benefits of gut microbiota-based interventions may not be avoided in the central nervous system (CNS) disorders. In this review, we outline the current state of knowledge of gut microbiota with respect to obsessive-compulsive disorder (OCD). We discuss how OCD-generated changes with respect to key neurotransmitters, hypothalamic-pituitary-adrenal axis, and immunological and inflammatory pathways are connected with the modifications of microbiota-gut-brain axis. Notably, administration of few probiotics such as Lactobacillus rhamnosus (ATCC 53103), Lactobacillus helveticus R0052, Bifidobacterium longum R0175, Saccharomyces boulardii, and Lactobacillus casei Shirota imparted positive effects in the management of OCD symptoms. Taken together, we suggest that gut microbiota-directed therapeutics may open new treatment approaches for the management of OCD.
Article
The communication between the gut and brain is crucial for regulating various essential physiological functions, such as energy balance, fluid homeostasis, immune response, and emotion. The vagal sensory pathway plays an indispensable role in connecting the gut to the brain. Recently, our knowledge of the vagal gut-brain axis has significantly advanced through molecular genetic studies, revealing a diverse range of vagal sensory cell types with distinct peripheral innervations, response profiles, and physiological functions. Here, we review the current understanding of how vagal sensory neurons contribute to gut-brain communication. First, we highlight recent transcriptomic and genetic approaches that have characterized different vagal sensory cell types. Then, we focus on discussing how different subtypes encode numerous gut-derived signals and how their activities are translated into physiological and behavioral regulations. The emerging insights into the diverse cell types and functional properties of vagal sensory neurons have paved the way for exciting future directions, which may provide valuable insights into potential therapeutic targets for disorders involving gut-brain communication.
Article
Recent research has focused on the link between diet, intestinal microbiota, and the impact of excessive consumption of saturated fatty acids. Saturated fatty acids, found in animal fats, dairy, and processed foods, contribute to dysbiosis, increase intestinal barrier permeability, chronic low-grade inflammation, oxidative stress, and dysfunction of the blood-brain barrier, affecting the central nervous system. High intake of saturated fatty acids is associated with an increased risk of developing Parkinson's disease (PD). Diets low in saturated fats, rich in fibers, promote microbial diversity, improve gut health, and potentially reduce the risk of neurodegenerative diseases like PD.
Article
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Preprint
Full-text available
The human colon is home to more than a trillion microorganisms that modulate diverse gastrointestinal processes and pathophysiologies. Our understanding of how this gut ecosystem impacts human health, although evolving, is still in its nascent stages and has been slowed by the lack of accessible and scalable tools suitable to studying complex host-mucus-microbe interactions. In this work, we report a synthetic gel-like material capable of recapitulating the varied structural, mechanical, and biochemical profiles of native human colonic mucus to develop compositionally simple microbiome screening platforms with broad utility in microbiology and drug discovery. The viscous fibrillar material is realized through the templated assembly of a fluorine-rich amino acid at liquid-liquid phase separated interfaces. The fluorine-assisted mucus surrogate (FAMS) can be decorated with various mucins to serve as a habitat for microbial colonization and be integrated with human colorectal epithelial cells to generate multicellular artificial mucosae, which we refer to as a microbiome organoid. Notably, FAMS are made with inexpensive and commercially available materials, and can be generated using simple protocols and standard laboratory hardware. As a result, this platform can be broadly incorporated into various laboratory settings to advance our understanding of probiotic biology and inform in vivo approaches. If implemented into high throughput screening approaches, FAMS may represent a valuable tool in drug discovery to study compound metabolism and gut permeability, with an exemplary demonstration of this utility presented here.
Article
Depression is a progressive neurodegenerative disease characterized by cognitive deficits and psychiatric symptoms. The gut microbiota-brain axis plays a pivotal role during depression development. CUMS mice and CUMS + FLX mice were used in the study. Finally, Lactiplantibacillus plantarum (L. plantarum) CR12 powder group were orally administrated to mice with CUMS. We used Open field test, Morris water maze, Tail suspension test and Sucrose preference test to examine learning related behaviors. In addition, Immunofluorescence, ELISA, qPCR, Western blot and Microbial sequencing were employed to address Cognitive and behavioral disorders in CUMS mice. We found that treatment of L. plantarum CR12 significantly improved cognitive function and spatial memory of Open field test, Tail suspension test and Sucrose preference, accompanied by attenuated the anxiety- and obsessive-like behaviors in the CUMS depression mice model and increased hippocampal autophagy levels, decreased neurotransmitter levels. Notably, L. plantarum CR12 re-constructed the gut microbiota composition, including increasing the relative abundance of Lactobacillus and reducing the relative abundance of Helicobacter pylori (H. pylori), and enhanced the butyrate formation, as well as related microbes levels. In conclusion, the present study indicated that L. plantarum CR12 significantly attenuates the cognitive and mental deficits in the CUMS mice, which could be partly explained by the reshaped microbiome and enhanced SCFAs formation in the gut. L. plantarum, as a probiotics, can be translated into a novel microbiota-targeted approach for managing metabolic and neurodegenerative diseases.
Article
The hypothalamic-pituitary-gonadal (HPG) axis connects the hypothalamus, pituitary gland, and gonads. The regulation of reproductive processes includes integrating various factors from structural functions and environmental conditions in the HPG axis, with the outcome indication of these processes being the pulsatile secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus. These factors include feed consumption and nutritional condition, sex steroids, season/photoperiod, pheromones, age, and stress. GnRH pulsatile secretion affects the pattern of gonadotropin secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which then regulates both endocrine function and gamete maturation in the gonads. This regulates gonadotropins and testosterone (T) production. There is evidence that in males, GnRH participates in a variety of host behavioural and physiological processes such as the release of reproductive hormones, progression of spermatogenesis and sperm function, aggressive behaviour, and physiological metabolism. GnRH activates receptors expressed on Leydig cells and Sertoli cells, respectively to stimulate T secretion and spermatogenesis in the testis. Photoperiod affects the reproductive system of the hypothalamic-pituitary axis via rhythmic diurnal melatonin secretion. Increased release of melatonin promotes sexual activity, GnRH production, LH stimulation, and T production. This induces testicular functions, spermatogenesis, and puberty. GnRH reduces the release of LH by the pituitary through the cascade effect and decreases plasma concentration of T. Gut microbiota maintain sex steroid homeostasis and may induce reduction in reproduction productivity. Recently, findings of kisspeptin-neurokinin-dynorphin neuronal network in the brain have resulted in fast advances in how GnRH secretion is controlled. Emerging studies have also indicated that other neuropeptide analogues could be used in control reproduction procedures in various goat and sheep breeds. The Tibetan male sheep and goats reproduce on a seasonal basis and have high reproductive performance. This is a review for the role of GnRH in Tibetan male sheep and goats reproduction. This is intended to enhance reproductive knowledge for understanding the key roles of GnRH relating to male reproductive efficiency of Tibetan sheep or goats.
Article
Full-text available
The Gut-brain axis is a bidirectional neural and humoral signaling that plays an important role in mental disorders and intestinal health and connects them as well. Over the past decades, the gut microbiota has been explored as an important part of the gastrointestinal tract that plays a crucial role in the regulation of most functions of various human organs. The evidence shows several mediators such as short-chain fatty acids, peptides, and neurotransmitters that are produced by the gut may affect the brain’s function directly or indirectly. Thus, dysregulation in this microbiome community can give rise to several diseases such as Parkinson’s disease, depression, irritable bowel syndrome, and Alzheimer’s disease. So, the interactions between the gut and the brain are significantly considered, and also it provides a prominent subject to investigate the causes of some diseases. In this article, we reviewed and focused on the role of the largest and most repetitive bacterial community and their relevance with some diseases that they have mentioned previously.
Article
The vagus nerve is a major pathway in the body that is responsible for regulating the activity of the parasympathetic nervous system, which plays an important role in mood disorders including anxiety and depression. Fluoxetine, also known as Prozac, is widely used to treat depression. Nevertheless, there are few studies on the vagus nerve-mediated action of fluoxetine. In this study, we aimed to investigate the vagus nerve-dependent actions of fluoxetine in mice with restraint stress-induced or antibiotics-induced anxiety- and depression-like behaviors. Compared to sham operation, vagotomy alone did not exhibit significant effects on behavioral changes and serotonin-related biomarkers in mice not exposed to stress, antibiotics, or fluoxetine. Oral administration of fluoxetine significantly alleviated anxiety- and depression-like behaviors. However, celiac vagotomy significantly attenuated the anti-depressive effects of fluoxetine. The vagotomy also inhibited the effect of fluoxetine to attenuate restraint stress- or cefaclor-induced reduction in serotonin levels and Htr1a mRNA expression in the hippocampus. These findings suggest that the vagus nerve may regulate the efficacy of fluoxetine for depression.
Chapter
Full-text available
Human gut microbiome is comprised of billions of microorganisms that reside within gastrointestinal tract and form a symbiotic bond with humans. This unique relationship between microbes and human is possible through gut–brain axis which enables bidirectional communication between central and enteric nervous system. The diversity of the gut microbiome, i.e., the composition of the microbes living in the human gut is influenced by various external and internal factors. The dietary habits of an individual not only play a major role in determining which kinds of microbes exist in the gut but also effect the interaction among the different species of microbes. Dietary habits in turn are shaped by the culture, lifestyle, ethnicity, and geographical location of a population. People belonging to same ethnicity have similar dietary habitats; however, their lifestyle and geographical variation may lead to different microbiome composition. Different ethnic groups within same geographical location have been observed to have diverse microbiome; meanwhile, migration has proven to westernize the gut microbiome. The evident data suggests that ethnicity, dietary habits, and geographical provenance are closely interlinked, and their interrelationship is a key player in determining gut microbiome diversity. In this chapter, the authors attempt to elucidate how and to what extent these three factors impact the microbiome composition and diversity.KeywordsGut microbiomeDietary habitsEthnicityGeographical provenance
Article
Background and hypothesis: Intestinal microbiota is intrinsically linked to human health. Evidence suggests that the composition and function of the microbiome differs in those with schizophrenia compared with controls. It is not clear how these alterations functionally impact people with schizophrenia. We performed a systematic review and meta-analysis to combine and evaluate data on compositional and functional alterations in microbiota in patients with psychosis or schizophrenia. Study design: Original studies involving humans and animals were included. The electronic databases PsycINFO, EMBASE, Web of Science, PubMed/MEDLINE, and Cochrane were systematically searched and quantitative analysis performed. Study results: Sixteen original studies met inclusion criteria (1376 participants: 748 cases and 628 controls). Ten were included in the meta-analysis. Although observed species and Chao 1 show a decrease in diversity in people with schizophrenia compared with controls (SMD = -0.14 and -0.66 respectively), that did not reach statistical significance. We did not find evidence for variations in richness or evenness of microbiota between patients and controls overall. Differences in beta diversity and consistent patterns in microbial taxa were noted across studies. We found increases in Bifidobacterium, Lactobacillus, and Megasphaera in schizophrenia groups. Variations in brain structure, metabolic pathways, and symptom severity may be associated with compositional alterations in the microbiome. The heterogeneous design of studies complicates a similar evaluation of functional readouts. Conclusions: The microbiome may play a role in the etiology and symptomatology of schizophrenia. Understanding how the implications of alterations in microbial genes for symptomatic expression and clinical outcomes may contribute to the development of microbiome targeted interventions for psychosis.
Article
Sex differences in the prevalence, symptomatology, severity, and other aspects of various neuropsychiatric diseases have been consistently reported. Stress and fear-related psychopathologies, such as anxiety disorders, depression, and post-traumatic stress disorder, are more prevalent in women. Investigations of the mechanisms underlying this sex disparity have described the influence of gonadal hormones in both humans and animal models. However, gut microbial communities are also likely to play a role, as these communities differ between the sexes, are involved in a bidirectional cycling of sex hormones and their metabolites, and are associated with changes in fear-related psychopathologies when gut microbiota are altered or removed. Here, we focus our review on: (1) the role of gut microbiota-brain connections in stress- and fear-based psychiatric disorders, (2) gut microbiota interactions with sex hormones with a particular focus on estrogen, and (3) investigations of these estrogen-gut microbiome interactions in fear extinction, a laboratory model of exposure therapy, to elucidate potential targets for psychiatric treatment. Finally, we call for more mechanistic research using female rodent models and humans.
Article
Objectives: To investigate the gut-brain axis, we explored the relationships among mood disturbance (MD), diet quality (DQ), and fecal microbiota in free-living adults. Methods: A cross-sectional analysis was conducted with data from 75 healthy adults enrolled in two studies. Anthropometrics, 16s rRNA gene sequencing of fecal microbes, DQ as assessed by Healthy Eating Index-2015 (HEI), and MD determined by Profile of Mood States (POMS) were included. Alpha-diversity and DQ differences were explored between low (n = 37) and high MD (n = 38) groups. Spearman correlations were used to investigate relationships between alpha-diversity, DQ, and POMS subscales. Moderation analysis explored the effect of HEI score on the relationship between MD and alpha-diversity. Results: Participants were mostly white (67%), 54.5 years old (±11.8), and overweight (28.5 ± 6.5 kg/m2). Shannon and Simpson indices indicate higher alpha-diversity in participants with low MD compared to high MD (p = 0.004 and p = 0.008, respectively). Simpson and Shannon indices were correlated with subscale of anger (rho = -0.303, p = 0.011; rho = -0.265, p = 0.027, respectively)and total MD (rho = -0.404, p = 0.001; rho = -0.357, p = 0.002, respectively). Refined grains were associated with fatigue and tension subscales (rho = 0.428, p < 0.001; rho = 0.302, p = 0.014, respectively). DQ did not significantly moderate the relationship between alpha-diversity and mood disturbance (F(7, 53) = 2.00, p = 0.072, R2 = 0.209). Shannon index was a significant predictor of MD (b = -4.39, t(53) = -2.55, p = 0.014), but total HEI score and the interaction (Shannon index*HEI score) were not significant. Discussion: Greater bacterial diversity was associated with lower MD, and DQ was associated with various mood state subscales in this sample of adults.
Article
Depression is a common mental illness characterized by continuous and long-term low mood. In recent years, with the increasing number of depression-related research, a growing body of research suggests that dysbiosis of the intestinal flora is associated with the development of depression. Probiotics can effectively improve intestinal flora disorders and repair gastrointestinal function, which is expected to become a new treatment for depression. This review summarizes the studies related to probiotics and depression.
Article
Background & aims: The beneficial effects of probiotic consumption on age-related decline in cerebral function have been previously reported in the literature; however, the mechanistic link between gut and brain interactions has not yet been fully elucidated. Therefore, this study aimed to identify the role of gut microbiota-derived metabolites in gut-brain interactions via blood metabolomic profiling analysis in clinical trials and in vitro mechanistic studies. Methods: A randomized, double-blind, placebo-controlled, multicenter clinical trial was conducted in 63 healthy elderly individuals (≥65 years of age). Participants were administered either placebo (placebo group, N = 31) or probiotic capsules (Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI; probiotics group, N = 32) for 12 weeks. Global and targeted metabolomic profiling analyses of their blood samples were then performed using 1H nuclear magnetic resonance and liquid chromatography-mass spectrometry methods, both at baseline and at the end of the trial. Gut microbial analysis was conducted using the 16S ribosomal ribonucleic acid gene sequencing method. Subsequently, microglial BV2 cells were treated in vitro with indole-3-propionic acid (IPA) following lipopolysaccharide stimulation, and neuronal SH-SY5Y cells were treated with conditioned media from the BV2 cells. Finally, the levels of pro-inflammatory cytokines in BV2 cells and neurotrophins in SH-SY5Y cells were quantified using a real-time polymerase chain reaction or enzyme-linked immunosorbent assay. Results: The metabolomic profiling analyses showed that probiotic consumption significantly altered the levels of metabolites involved in tryptophan metabolism (P < 0.01). Among these metabolites, gut microbiota-produced IPA had a 1.91-fold increase in the probiotics group (P < 0.05) and showed a significant relation to gut bacterial profiles (P < 0.01). Elevated IPA levels were also positively associated with the level of serum brain-derived neurotropic factor (BDNF) in the probiotics group (r = 0.28, P < 0.05), showing an inverse trend compared to the placebo group. In addition, in vitro treatment with IPA (5 μM) significantly reduced the concentration of proinflammatory TNF-α in activated microglia (P < 0.05), and neuronal cells cultured with conditioned media from IPA-treated microglia showed a significant increase in BDNF and nerve growth factor production (P < 0.05). Conclusions: These results show that gut microbiota-produced IPA plays a role in protecting the microglia from inflammation, thus promoting neuronal function. Therefore, this suggests that IPA is a significant mediator linking the interaction between the gut and the brain in the elderly with probiotic supplementation.
Article
Neurological disorders are the major cause of disability, leading to a decrease in quality of life by impairing cognitive, sensorimotor, and motor functioning. Several factors have been proposed in the pathogenesis of neurobehavioral changes, including nutritional, environmental, and genetic predisposition. Vitamin D (VD) is an environmental and nutritional factor that is widely distributed in the central nervous system's subcortical grey matter, neurons of the substantia nigra, hippocampus, thalamus, and hypothalamus. It is implicated in the regulation of several brain functions by preserving neuronal structures. It is a hormone rather than a nutritional vitamin that exerts a regulatory role in the pathophysiology of several neurological disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and multiple sclerosis. A growing body of epidemiological evidence suggests that VD is critical in neuronal development and shows neuroprotective effects by influencing the production and release of neurotrophins, antioxidants, immunomodulatory, regulation of intracellular calcium balance, and direct effect on the growth and differentiation of nerve cells. This review provides up-to-date and comprehensive information on vitamin D deficiency, risk factors, and clinical and preclinical evidence on its relationship with neurological disorders. Furthermore, this review provides mechanistic insight into the implications of vitamin D and its deficiency on the pathogenesis of neurological disorders. Thus, an understanding of the crucial role of vitamin D in the neurobiology of neurodegenerative disorders can assist in the better management of vitamin D-deficient individuals.
Book
Full-text available
O livro está organizado em quatro capítulos. O primeiro capítulo apresenta um breve histórico regulatório do código de deontologia farmacêutica e publicações científicas relacionadas aos serviços de Farmácia Clínica ou Cuidado Farmacêutico. O Prof. Dr. Jean Leandro do Santos descreve a evolução nacional do ensino, pesquisa e extensão em Cuidado Farmacêutico. Registra-se as atividades realizadas desde 2007 por entidades estudantis, projetos de pesquisa, extensão universitária e atividades de internacionalização desenvolvidas pelo Núcleo de Atenção Farmacêutica (NAF) da UNESP. No segundo capítulo, descrevemos a regulamentação sanitária de Farmacovigilância à Segurança do Paciente, as estratégias e ferramentas que podem ser utilizadas na prestação de serviços farmacêuticos de rastreamento em saúde, revisão da farmacoterapia, conciliação de medicamentos ou acompanhamento farmacoterapêutico para detectar, prevenir e resolver problemas relacionados à farmacoterapia, incluindo grupos específicos (idosos, crianças e gestantes). A proposta foi a organização dos resultados e materiais dos projetos de pesquisa e extensão universitária desenvolvidos em Farmacovigilância e Farmácia Clínica no Hospital de Américo Brasiliense, de 2013 a 2019. No terceiro capítulo é descrito um modelo de prática de acompanhamento farmacoterapêutico e suas etapas, incluindo os serviços de conciliação de medicamentos, manejo de problemas de saúde autolimitados (e.g., dor), e educação em saúde para compreensão do estado de saúde e farmacoterapia, melhorando a adesão e transformando a experiência farmacoterapêutica do paciente. Também são abordados os procedimentos de verificação de parâmetros clínicos, organização de medicamentos conforme os protocolos da doença de Alzheimer e as comorbidades associadas para a gestão da condição de saúde para pessoas com diagnóstico provável de Alzheimer. O capítulo sistematiza o método empregado nos projetos de mestrado, iniciação científica e de extensão da entidade estudantil Atenção Farmacêutica Estudantil Permanente (AFEP) da UNESP desenvolvidas no Centro de Referência do Idoso de Araraquara (CRIA) de 2012 a 2015. Os indicadores de resultados do serviço de cuidado farmacêutico implantado no CRIA foram premiados pelo Conselho Federal de Farmácia, como experiências exitosas no Sistema Único de Saúde, em 2016. No quarto capítulo, descrevemos os atos de prescrição farmacêutica e indicação farmacêutica a fim de apoiar decisões nos serviços de manejo de problemas autolimitados, ou de acompanhamento farmacoterapêutico. A Profª. Dr. Hellen Maluly e o Prof. Dr. Max Viana descrevem a prescrição e o manejo de suplemento alimentar e a Profª. Dr. Eliana Rodrigues, Bárbara Migioli e colaboradores, o manejo de produtos à base de plantas para problemas de saúde autolimitados. O livro é um trabalho conjunto de professores, pós-graduandos e extensão universitária da Faculdade de Ciências Farmacêuticas da UNESP e amigos colaboradores da Universidade Federal de São Paulo (UNIFESP), Universidade de São Paulo (USP-RP), Universidade Federal da Bahia (UFBA) e Faculdade Oswaldo Cruz (FOC) e tem como objetivo apoiar atividades de ensino, pesquisa e extensão em Cuidado Farmacêutico, a nível de graduação, pós-graduação stricto e lato sensu e profissionais farmacêuticos em sua prática profissional.
Article
Full-text available
Citation: De Oliveira, F.L.; Salgaço, M.K.; de Oliveira, M.T.; Mesa, V.; Sartoratto, A.; Peregrino, A.M.; Ramos, W.S.; Sivieri, K. Exploring the Potential of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 as Promising Psychobiotics Using SHIME. Nutrients 2023, 15, 1521. https://doi.org/10.3390/ nu15061521 Academic Editors: Abstract: Psychobiotics are probiotics that have the characteristics of modulating central nervous system (CNS) functions or reconciled actions by the gut-brain axis (GBA) through neural, humoral and metabolic pathways to improve gastrointestinal activity as well as anxiolytic and even antide-pressant abilities. The aim of this work was to evaluate the effect of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the gut microbiota of mildly anxious adults using SHIME ®. The protocol included a one-week control period and two weeks of treatment with L. helveticus R0052 and B. longum R0175. Ammonia (NH4+), short chain fatty acids (SCFAs), gamma-aminobutyric acid (GABA), cytokines and microbiota composition were determined. Probiotic strains decreased significantly throughout the gastric phase. The highest survival rates were exhibited by L. helveticus R0052 (81.58%; 77.22%) after the gastric and intestinal phase when compared to B. longum (68.80%; 64.64%). At the genus level, a taxonomic assignment performed in the ascending colon in the SHIME ® model showed that probiotics (7 and 14 days) significantly (p < 0.005) increased the abundance of Lactobacillus and Olsenella and significantly decreased Lachnospira and Escheria-Shigella. The pro-biotic treatment (7 and 14 days) decreased (p < 0.001) NH 4 + production when compared to the control period. For SCFAs, we observed after probiotic treatment (14 days) an increase (p < 0.001) in acetic acid production and total SCFAs when compared to the control period. Probiotic treatment increased (p < 0.001) the secretion of anti-inflammatory (IL-6 and IL-10) and decreased (p < 0.001) pro-inflammatory cytokines (TNF-alpha) when compared to the control period. The gut-brain axis plays an important role in the gut microbiota, producing SCFAs and GABA, stimulating the production of anti-anxiety homeostasis. The signature of the microbiota in anxiety disorders provides a promising direction for the prevention of mental illness and opens a new perspective for using the psychobiotic as a main actor of therapeutic targets.
Article
Full-text available
Spain has an aging population; 19.93% of the Spanish population is over 65. Aging is accompanied by several health issues, including mental health disorders and changes in the gut microbiota. The gut-brain axis is a bidirectional network linking the central nervous system with gastrointestinal tract functions, and therefore, the gut microbiota can influence an individual’s mental health. Furthermore, aging-related physiological changes affect the gut microbiota, with differences in taxa and their associated metabolic functions between younger and older people. Here, we took a case–control approach to study the interplay between gut microbiota and mental health of elderly people. Fecal and saliva samples from 101 healthy volunteers over 65 were collected, of which 28 (EE|MH group) reported using antidepressants or medication for anxiety or insomnia at the time of sampling. The rest of the volunteers (EE|NOMH group) were the control group. 16S rRNA gene sequencing and metagenomic sequencing were applied to determine the differences between intestinal and oral microbiota. Significant differences in genera were found, specifically eight in the gut microbiota, and five in the oral microbiota. Functional analysis of fecal samples showed differences in five orthologous genes related to tryptophan metabolism, the precursor of serotonin and melatonin, and in six categories related to serine metabolism, a precursor of tryptophan. Moreover, we found 29 metabolic pathways with significant inter-group differences, including pathways regulating longevity, the dopaminergic synapse, the serotoninergic synapse, and two amino acids.
Article
Full-text available
A microbiota intestinal tem sido alvo de muitos estudos, principalmente pela relação que estabelece com a homeostase do organismo. A disbiose desses microrganismos está associada a distúrbios metabólicos como diabetes, dislipidemia e obesidade. A obesidade é um dos grandes problemas de saúde pública devido a suas comorbidades, e as cirurgias bariátricas apresentam-se como alternativa terapêutica para essa condição. Métodos: Foi realizada revisão sistemática nas bases de dados Pubmed, Scielo e Lilacs em artigos originais utilizando os descritores: bariátrica/ cirurgia bariátrica, e, microbiota/ microbioma/ bacteria/ flora e seus sinônimos em inglês e espanhol. Resultados: de um total inicial de 1387 artigos, 8 foram utilizados para esse estudo, por serem condizentes com a proposta aventada. Conclusão: As cirurgias bariátricas modificam a microbiota intestinal principalmente em relação ao Filo Proteobacteria. São necessários novos estudos clínicos acerca do tema de modo a se estabelecer a influência e modificação de microbiota pós cirurgia bariátrica.
Article
The prevalence of neurodegenerative, cerebrovascular, and psychiatric diseases and other neurological disorders has increased dramatically worldwide. Fucoxanthin is an algal pigment with many biological functions, and there is rising evidence that fucoxanthin plays a preventive and therapeutic role in neurological disorders. This review focuses on the metabolism, bioavailability, and blood-brain barrier penetration of fucoxanthin. Furthermore, the neuroprotective potential of fucoxanthin in neurodegenerative diseases, cerebrovascular diseases, and psychiatric diseases as well as other neurological disorders such as epilepsy, neuropathic pain, and brain tumors by acting on multiple targets will be summarized. The multiple targets include regulating apoptosis, reducing oxidative stress, activating the autophagy pathway, inhibiting Aβ aggregation, improving dopamine secretion, reducing α-synuclein aggregation, attenuating neuroinflammation, modulating gut microbiota, and activating brain-derived neurotrophic factor, etc. Additionally, we look forward to brain-targeted oral transport systems due to the low bioavailability and blood-brain barrier permeability of fucoxanthin. We also propose exploring the systemic mechanisms of fucoxanthin metabolism and transport through the gut-brain process and envision new therapeutic targets for fucoxanthin to act on the central nervous system. Finally, we propose dietary fucoxanthin delivery interventions to achieve preventive effects on neurological disorders. This review provides a reference for the application of fucoxanthin in the neural field.
Article
Full-text available
The central nervous system (CNS) and the gastro-intestinal tract (GIT) form numerous connections that are often referred to in the scientific literature as the brain-gut axis. It includes structures from the enteric nervous system, the sympathetic nervous system and the spinal nerves, the vagus nerve and the endocrine system. A number of neurotransmitters and hormones take part in the formation of the nexuses of the brain-gut axis, one of them being serotonin (5-hydroxytrypt-amine, 5-HT). 5-HT is a neurotransmitter synthesized from tryptophan in the serotonergic neurons of the CNS (10%) and the enterochromaffin cells of the GIT (90%). A number of publications point to the contribution of the intestinal microflora-in particular anaer-obic bacteria, such as Turicibacter sanguinis, Akker-mansia muciniphila, Lactobacillus plantarum, Lac-tobacillus Rhamnosus, and other bacteria of the normal gut microbiome, in the regulation of the levels of 5-HT in the GIT and the brain-gut axis. The coloniza-tion of the GIT with pathogenic bacteria and dysbac-teriosis can cause dysregulation in the brain gut-axis , which in turn can affect the function of the CNS. Research shows that such dysregulations take part in the pathogenesis of a number of gastrointestinal diseases (inflammatory bowel disease) and neuropsychi-atric disorders (depression, anxiety and panic disorders , autism and multiple sclerosis). The aim of our research is to review the existing scientific literature
Article
Full-text available
The gut microbiota plays a key role in the function of the host immune system and neuroimmune diseases. Alterations in the composition of the gut microbiota can lead to pathology and altered formation of microbiota-derived components and metabolites. A series of neuroimmune diseases, such as myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), Guillain–Barré syndrome (GBS), and autoimmune encephalitis (AIE), are associated with changes in the gut microbiota. Microecological therapy by improving the gut microbiota is expected to be an effective measure for treating and preventing some neuroimmune diseases. This article reviews the research progress related to the roles of gut microbiota and fecal microbiota transplantation (FMT) in neuroimmune diseases.
Article
Microorganisms in human life play a huge role: in particular, those that coexist with the host organism, inhabiting the skin, upper respiratory tract, external genitalia and especially the digestive tract. The intestinal microbiota, including bacteriome, mycobiome and virome, not only takes part in the digestion process, but also provides the synthesis of a number of vitamins. The intestinal microbiome also serves as the basis for a system of extensive bidirectional neuroendocrine pathways that connect microbiota with various regions of the central nervous system, the hypothalamic-pituitary-adrenal system, and the peripheral parts of the autonomic nervous system. This system of connections has got the name of gut-brain axis and has attracted close attention of scientists over the past two decades, since a targeted impact on the intestinal flora is potentially capable of changing the nature of nervous system regulatory influences on the whole body. It is especially important to study patterns of functioning of the gut-brain axis in patients with the nervous system pathology, namely neurodegenerative and demyelinating diseases. Methods for their treatment continue to improve, and perhaps the correction of the gut microbiotic composition will serve as an additional therapeutic approach. The review article describes current views on the role of the intestinal microbiota, provides the latest data on the composition of bacteriome, mycobiome, and virome in patients with relapsing-remitting multiple sclerosis.
Book
Full-text available
Sağlıklı yaşam
Chapter
Multiple sclerosis (MS) is a chronic neurodegenerative disorder whose etiology is not fully understood. Genetic factors, environmental factors, and eating habits are involved in the onset and development of the disease. Alterations in the gut microbiota are related to MS development since various studies directly relate it to the immune system and its protection against infections. The complex intestinal microbiota has not yet been fully understood. In particular, dysbiosis has been found in MS, especially in species that produce butyrate, propionate, and short-chain fatty acids, among other bacterial products or metabolites. On the other hand, the virome is one of the most studied, especially Epstein–Barr, Herpes Virus, retrovirus, Rubella, and Varicella-Zoster, some of the most related to multiple sclerosis. This chapter discusses the role of the microbiota and its pathogenesis and management in Multiple Sclerosis.
Article
Full-text available
AIM: To determine whether Salmonella Typhimurium (STM) in gastrointestinal tract can induce the functional activation of brain, whether the vagus nerve involves in signaling immune information from gastrointestinal tract to brain and how it influences the immune function under natural infection condition. METHODS: Animal model of gastrointestinal tract infection in the rat was established by an intubation of Salmonella Typhimurium (STM) into stomach to mimic the condition of natural bacteria infection. Subdiagphragmatic vagotomy was performed in some of the animals 28 days before infection. The changes of Fos expression visualized with immunohistochemistry technique in hypothalamic paraventricular nucleus (PVN) and superaoptic nucleus (SON) were counted. Meanwhile, the percentage and the Mean Intensities of Fluorescent (MIFs) of CD4+ and CD8+ T cells in peripheral blood were measured by using flow cytometry (FCM), and the pathological changes in ileum and mesenteric lymph node were observed in HE stained sections. RESULTS: In bacteria-stimulated groups, inflammatory pathological changes were seen in ileum and mesenteric lymph node. The percentages of CD4+ T cells in peripheral blood were decreased from 42% ± 4.5% to 34% ± 4.9% (P < 0.05) and MIFs of CD8+ T cells were also decreased from 2.9 ± 0.39 to 2.1 ± 0.36 (P < 0.05) with STM stimulation. All of them proved that our STM-infection model was reliable. Fos immunoreactive (Fos-ir) cells in PVN and SON increased significantly with STM stimulation, from 189 ± 41 to 467 ± 62 (P < 0.05) and from 64 ± 21 to 282 ± 47 (P < 0.05) individually, which suggested that STM in gastrointestinal tract induced the functional activation of brain. Subdiagphragmatic vagotomy attenuated Fos expression in PVN and SON induced by STM, from 467 ± 62 to 226 ± 45 (P < 0.05) and from 282 ± 47 to 71 ± 19 (P < 0.05) individually, and restored the decreased percentages of CD4+ T cells induced by STM from 34% ± 4.9% to original level 44% ± 6.0% (P < 0.05). In addition, subdiagphragmatic vagotomy itself also decreased the percentages of CD8+ T cells (from 28% ± 3.0% to 21% ± 5.9%, P < 0.05) and MIFs of CD4+ (from 6.6 ± 0.6 to 4.9 ± 1.0, P < 0.05) and CD8+ T cells (from 2.9 ± 0.39 to1.4 ± 0.34, P < 0.05). Both of them manifested the important role of vagus nerve in transmitting immune information from gut to brain and maintaining the immune balance of the organism. CONCLUSION: Vagus nerve does involve in transmitting abdominal immune information into the brain in STM infection condition and play an important role in maintenance of the immune balance of the organism.
Article
Full-text available
In a previous clinical study, a probiotic formulation (PF) consisting of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 (PF) decreased stress-induced gastrointestinal discomfort. Emerging evidence of a role for gut microbiota on central nervous system functions therefore suggests that oral intake of probiotics may have beneficial consequences on mood and psychological distress. The aim of the present study was to investigate the anxiolytic-like activity of PF in rats, and its possible effects on anxiety, depression, stress and coping strategies in healthy human volunteers. In the preclinical study, rats were daily administered PF for 2 weeks and subsequently tested in the conditioned defensive burying test, a screening model for anti-anxiety agents. In the clinical trial, volunteers participated in a double-blind, placebo-controlled, randomised parallel group study with PF administered for 30 d and assessed with the Hopkins Symptom Checklist (HSCL-90), the Hospital Anxiety and Depression Scale (HADS), the Perceived Stress Scale, the Coping Checklist (CCL) and 24 h urinary free cortisol (UFC). Daily subchronic administration of PF significantly reduced anxiety-like behaviour in rats (P < 0·05) and alleviated psychological distress in volunteers, as measured particularly by the HSCL-90 scale (global severity index, P < 0·05; somatisation, P < 0·05; depression, P < 0·05; and anger-hostility, P < 0·05), the HADS (HADS global score, P < 0·05; and HADS-anxiety, P < 0·06), and by the CCL (problem solving, P < 0·05) and the UFC level (P < 0·05). L. helveticus R0052 and B. longum R0175 taken in combination display anxiolytic-like activity in rats and beneficial psychological effects in healthy human volunteers.
Article
Full-text available
The brain-gut axis is a key regulator of normal intestinal physiology; for example, psychological stress is linked to altered gut barrier function, development of food allergies and changes in behaviour. Whether intestinal events, such as enteric bacterial infections and bacterial colonisation, exert a reciprocal effect on stress-associated behaviour is not well established. To determine the effects of either acute enteric infection or absence of gut microbiota on behaviour, including anxiety and non-spatial memory formation. Behaviour was assessed following infection with the non-invasive enteric pathogen, Citrobacter rodentium in both C57BL/6 mice and germ-free Swiss-Webster mice, in the presence or absence of acute water avoidance stress. Whether daily treatment with probiotics normalised behaviour was assessed, and potential mechanisms of action evaluated. No behavioural abnormalities were observed, either at the height of infection (10 days) or following bacterial clearance (30 days), in C rodentium-infected C57BL/6 mice. When infected mice were exposed to acute stress, however, memory dysfunction was apparent after infection (10 days and 30 days). Memory dysfunction was prevented by daily treatment of infected mice with probiotics. Memory was impaired in germ-free mice, with or without exposure to stress, in contrast to conventionally reared, control Swiss-Webster mice with an intact intestinal microbiota. The intestinal microbiota influences the ability to form memory. Memory dysfunction occurs in infected mice exposed to acute stress, while in the germ-free setting memory is altered at baseline.
Article
Full-text available
Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF) by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety.
Article
Full-text available
The use of probiotics is increasing in popularity for both the prevention and treatment of a variety of diseases. While a growing number of well-conducted, prospective, randomized, controlled, clinical trials are emerging and investigations of underlying mechanisms of action are being undertaken, questions remain with respect to the specific immune and physiological effects of probiotics in health and disease. This Review considers recent advances in clinical trials of probiotics for intestinal disorders in both adult and pediatric populations. An overview of recent in vitro and in vivo research related to potential mechanisms of action of various probiotic formulations is also considered.
Article
Full-text available
Enquiries among patients on the one hand and experimental and observational studies on the other suggest an influence of stress on inflammatory bowel diseases (IBD). However, since this influence remains hypothetical, further research is essential. We aimed to devise recommendations for future investigations in IBD by means of scrutinizing previously applied methodology. We critically reviewed prospective clinical studies on the effect of psychological stress on IBD. Eligible studies were searched by means of the PubMed electronic library and through checking the bibliographies of located sources. We identified 20 publications resulting from 18 different studies. Sample sizes ranged between 10 and 155 participants. Study designs in terms of patient assessment, control variables, and applied psychometric instruments varied substantially across studies. Methodological strengths and weaknesses were irregularly dispersed. Thirteen studies reported significant relationships between stress and adverse outcomes. Study designs, including accuracy of outcome assessment and repeated sampling of outcomes (i.e. symptoms, clinical, and endoscopic), depended upon conditions like sample size, participants' compliance, and available resources. Meeting additional criteria of sound methodology, like taking into account covariates of the disease and its course, is strongly recommended to possibly improve study designs in future IBD research.
Article
Full-text available
While bidirectional brain-gut interactions are well known mechanisms for the regulation of gut function in both healthy and diseased states, a role of the enteric flora--including both commensal and pathogenic organisms--in these interactions has only been recognized in the past few years. The brain can influence commensal organisms (enteric microbiota) indirectly, via changes in gastrointestinal motility and secretion, and intestinal permeability, or directly, via signaling molecules released into the gut lumen from cells in the lamina propria (enterochromaffin cells, neurons, immune cells). Communication from enteric microbiota to the host can occur via multiple mechanisms, including epithelial-cell, receptor-mediated signaling and, when intestinal permeability is increased, through direct stimulation of host cells in the lamina propria. Enterochromaffin cells are important bidirectional transducers that regulate communication between the gut lumen and the nervous system. Vagal, afferent innervation of enterochromaffin cells provides a direct pathway for enterochromaffin-cell signaling to neuronal circuits, which may have an important role in pain and immune-response modulation, control of background emotions and other homeostatic functions. Disruption of the bidirectional interactions between the enteric microbiota and the nervous system may be involved in the pathophysiology of acute and chronic gastrointestinal disease states, including functional and inflammatory bowel disorders.
Article
Full-text available
Irritable bowel syndrome (IBS) is a common disorder with widespread prevalence. Due to its heterogeneous pathogenesis, efficacious treatments are lacking. The few medications that are effective for treating global IBS symptoms have either been withdrawn or restricted due to detrimental side effects; thus, safe and effective alternatives are urgently needed. Increasing data have revealed that inflammatory changes may play a role in the development of IBS, and probiotics, commensal organisms with inherent health benefits, may alter that milieu. Although their exact mechanisms of action remain elusive, it is clear that the beneficial properties inherent to each probiotic species are strain specific. Bifidobacterium infantis 35624 ( B infantis 35624; Bifantis, The Procter & Gamble Company, Cincinnati, OH), is a probiotic with unique abilities to reduce intestinal inflammation. Two randomized, controlled trials have validated its efficacy for treating both individual and global IBS symptoms without evidence to suggest an increase in adverse events. B. infantis 35624 appears safe and effective for the treatment of IBS.
Article
Full-text available
Chronic fatigue syndrome (CFS) is complex illness of unknown etiology. Among the broad range of symptoms, many patients report disturbances in the emotional realm, the most frequent of which is anxiety. Research shows that patients with CFS and other so-called functional somatic disorders have alterations in the intestinal microbial flora. Emerging studies have suggested that pathogenic and non-pathogenic gut bacteria might influence mood-related symptoms and even behavior in animals and humans. In this pilot study, 39 CFS patients were randomized to receive either 24 billion colony forming units of Lactobacillus casei strain Shirota (LcS) or a placebo daily for two months. Patients provided stool samples and completed the Beck Depression and Beck Anxiety Inventories before and after the intervention. We found a significant rise in both Lactobacillus and Bifidobacteria in those taking the LcS, and there was also a significant decrease in anxiety symptoms among those taking the probiotic vs controls (p = 0.01). These results lend further support to the presence of a gut-brain interface, one that may be mediated by microbes that reside or pass through the intestinal tract.
Article
Full-text available
New neurons in the adult dentate gyrus are widely held to incorporate into hippocampal circuitry via a stereotypical sequence of morphological and physiological transitions, yet the molecular control over this process remains unclear. We studied the role of brain-derived neurotrophic factor (BDNF)/TrkB signaling in adult neurogenesis by deleting the full-length TrkB via Cre expression within adult progenitors in TrkBlox/lox mice. By 4 weeks after deletion, the growth of dendrites and spines is reduced in adult-born neurons demonstrating that TrkB is required to create the basic organization of synaptic connections. Later, when new neurons normally display facilitated synaptic plasticity and become preferentially recruited into functional networks, lack of TrkB results in impaired neurogenesis-dependent long-term potentiation and cell survival becomes compromised. Because of the specific lack of TrkB signaling in recently generated neurons a remarkably increased anxiety-like behavior was observed in mice carrying the mutation, emphasizing the contribution of adult neurogenesis in regulating mood-related behavior. • BDNF • LTP • neurogenesis • plasticity • dendritogenesis
Article
Full-text available
Experiments were performed using physiological measures and behavioural parameters to find the acclimatization period in mice to common scientific procedures. Corticosterone levels were significantly elevated in mice killed immediately after being moved to an experimental room (P < 0.05) but levels returned to the normal in less than 1 day, despite mice being exposed to additional stressors such as novel environment, new cages, new bedding material, separation from their cage mates, regrouping, isolation in individually housed mice and a new handler. Behaviours such as rearing, climbing, grooming, feeding and sexual, changed significantly immediately after transportation of mice but most of these behaviours stabilized relatively quickly. In spite of the corticosterone levels, our behavioural observations suggest that even 4 days were not enough to allow the mice to acclimatize fully.
Article
Full-text available
Monkeys with lesions limited to the hippocampal region (the hippocampus proper, the dentate gyrus, and the subiculum) were impaired on two tasks of recognition memory: delayed nonmatching to sample and the visual paired-comparison task. Recognition memory was impaired in five different groups of monkeys, whether the lesions were made by an ischemic procedure, by radio frequency, or by ibotenic acid. The finding that the hippocampal region is essential for normal recognition memory performance is considered in the context of current ideas about the role of the hippocampus in declarative memory.
Article
Full-text available
To determine whether Salmonella Typhimurium (STM)in gastrointestinal tract can induce the functional activation of brain, whether the vagus nerve involves in signaling immune information from gastrointestinal tract to brain and how it influences the immune function under natural infection condition. Animal model of gastrointestinal tract infection in the rat was established by an intubation of Salmonella Typhimurium (STM) into stomach to mimic the condition of natural bacteria infection. Subdiagphragmatic vagotomy was performed in some of the animals 28 days before infection. The changes of Fos expression visualized with immunohistochemistry technique in hypothalamic paraventricular nucleus (PVN) and superaoptic nucleus (SON) were counted. Meanwhile, the percentage and the Mean Intensities of Fluorescent (MIFs) of CD4+ and CD8+ T cells in peripheral blood were measured by using flow cytometry (FCM), and the pathological changes in ileum and mesenteric lymph node were observed in HE stained sections. In bacteria-stimulated groups, inflammatory pathological changes were seen in ileum and mesenteric lymph node. The percentages of CD4+ T cells in peripheral blood were decreased from 42%+/-4.5% to 34%+/-4.9% (P<0.05) and MIFs of CD8+ T cells were also decreased from 2.9+/-0.39 to 2.1+/-0.36 (P<0.05) with STM stimulation. All of them proved that our STM-infection model was reliable. Fos immunoreactive (Fos-ir) cells in PVN and SON increased significantly with STM stimulation, from 189+/-41 to 467+/-62 (P<0.05) and from 64+/-21 to 282+/-47 (P<0.05) individually, which suggested that STM in gastrointestinal tract induced the functional activation of brain. Subdiagphragmatic vagotomy attenuated Fos expression in PVN and SON induced by STM, from 467+/-62 to 226+/-45 (P<0.05) and from 282+/-47 to 71+/-19 (P<0.05) individually, and restored the decreased percentages of CD4+ T cells induced by STM from 34%+/-4.9% to original level 44%+/-6.0% (P<0.05). In addition, subdiagphragmatic vagotomy itself also decreased the percentages of CD8+ T cells (from 28%+/-3.0% to 21%+/-5.9%, P<0.05) and MIFs of CD4+ (from 6.6+/-0.6 to 4.9+/-1.0, P<0.05) and CD8+ T cells (from 2.9+/-0.39 to 1.4+/-0.34, P<0.05). Both of them manifested the important role of vagus nerve in transmitting immune information from gut to brain and maintaining the immune balance of the organism. Vagus nerve does involve in transmitting abdominal immune information into the brain in STM infection condition and play an important role in maintenance of the immune balance of the organism.
Article
Full-text available
The mechanism of the apparent anti-inflammatory action of probiotic organisms is unclear. Lactobacillus reuteri is effective in inhibiting colitis in interleukin-10 (IL-10)-deficient mice. Nerve growth factor (NGF), in addition to its activity on neuronal cell growth, has significant anti-inflammatory effects in several experimental systems in vitro and in vivo, including a model of colitis. Our experiments were designed to explore the mechanism of effect of L. reuteri in the human epithelial cell lines T84 and HT29 on cytokine and NGF synthesis and IL-8 response to tumor necrosis factor alpha (TNF-α). Epithelial cells were cultured for various times with live and killed L. reuteri and examined by reverse transcription-PCR for NGF, IL-10, and TNF-α-induced IL-8 expression. An enzyme-linked immunosorbent assay was used to quantitate intracellular IL-8 and secreted product. Western blotting and confocal microscopy were used to determine the effects on IκB and NF-κB, respectively. Live but not heat-killed or gamma-irradiated L. reuteri upregulated NGF and dose dependently inhibited constitutive synthesis by T84 and HT29 cells of IL-8 and that induced by TNF-α in terms of mRNA and intracellular and secreted protein. Similarly, L. reuteri inhibited IL-8 synthesis induced by Salmonella enterica serovar Typhimurium. L. reuteri required preincubation and adherence for effect, inhibited translocation of NF-κB to the nuclei of HeLa cells, and prevented degradation of IκB. Neither cellular lysates nor media supernatants had any effect on TNF-α-induced IL-8. The conclusion is that L. reuteri has potent direct anti-inflammatory activity on human epithelial cells, which is likely to be related to the activity of ingested probiotics. L. reuteri also upregulates an unusual anti-inflammatory molecule, NGF, and inhibits NF-κB translocation to the nucleus.
Article
Full-text available
Major depressive disorder (MDD) is an extremely complex and heterogeneous condition. Emerging research suggests that nutritional influences on MDD are currently underestimated. MDD patients have been shown to have elevated levels of pro-inflammatory cytokines, increased oxidative stress, altered gastrointestinal (GI) function, and lowered micronutrient and omega-3 fatty acid status. Small intestinal bacterial overgrowth (SIBO) is likely contributing to the limited nutrient absorption in MDD. Stress, a significant factor in MDD, is known to alter GI microflora, lowering levels of lactobacilli and bifidobacterium. Research suggests that bacteria in the GI tract can communicate with the central nervous system, even in the absence of an immune response. Probiotics have the potential to lower systemic inflammatory cytokines, decrease oxidative stress, improve nutritional status, and correct SIBO. The effect of probiotics on systemic inflammatory cytokines and oxidative stress may ultimately lead to increased brain derived neurotrophic factor (BDNF). It is our contention that probiotics may be an adjuvant to standard care in MDD.
Article
Full-text available
The present study tested whether individual differences in anxiety- and fear-related behaviour are associated with between-subjects variation in postmortem brain levels of selected neurotrophic factors. Naïve C57BL6/J mice of both sexes were subjected either to an elevated plus maze test or to a Pavlovian fear conditioning paradigm. Two days after behavioural assays, the mice were sacrificed for postmortem quantification of the protein levels of brain derived neurotrophic factors (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the hippocampus and amygdala. Significant correlations between behavioural measures and postmortem regional neurotrophic factor contents were revealed. The magnitude of anxiety-like behaviour in the elevated plus maze was positively related to dorsal hippocampal BDNF levels, but negatively related to NGF levels in dorsal hippocampus and in the amygdala. On the other hand, the expression of conditioned fear is positively related to amygdala BDNF and NGF levels, and to dorsal hippocampal NGF levels. Our results add to existing reports in human as well as in animals of correlation between anxiety trait and gross measures of hippocampal volume or activation levels. Moreover, a distinction between spontaneous and learned (or conditioned) anxiety/fear would be relevant to the identification of neurotrophin signalling mechanisms in the hippocampus and amygdala implicated in anxiety and related psychopathology.
Article
Full-text available
Enteric infections, with or without overt diarrhea, have profound effects on intestinal absorption, nutrition, and childhood development as well as on global mortality. Oral rehydration therapy has reduced the number of deaths from dehydration caused by infection with an enteric pathogen, but it has not changed the morbidity caused by such infections. This Review focuses on the interactions between enteric pathogens and human genetic determinants that alter intestinal function and inflammation and profoundly impair human health and development. We also discuss specific implications for novel approaches to interventions that are now opened by our rapidly growing molecular understanding.
Article
Full-text available
Stress has been shown to have both central and peripheral effects, promoting psychological illness (such as anxiety and depression), as well influencing peripheral disease in the intestine. Stress in humans can exacerbate symptoms of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), lowering visceral pain thresholds and decreasing mucosal barrier function. Studies in rodents have revealed that both acute and chronic exposure to stressors can lead to pathophysiology of the small and large intestine, including altered ion secretion and increased epithelial permeability (by both transcellular and paracellular pathways). Prolonged exposure to stress can induce low-grade inflammation, cause ultrastructural epithelial abnormalities, and alter bacterial-host interactions allowing greater microbial translocation. In this review, we discuss the stress response and the effects of both acute and chronic stress to induce pathophysiological damage to the gut. We present the potential pathways involved, and the proposed mechanisms of action mediating the effects. Furthermore, we explore the impact of early life stress on colonic physiology in neonatal rodents and the implications for gut dysfunction in adulthood.
Article
There is a bidirectional relation between the central nervous system and the digestive tract, i.e., the brain-gut axis. Numerous data argue for a dysfunction of the brain-gut axis in the pathophysiology of irritable bowel syndrome (IBS). Visceral hypersensitivity is a marker of IBS as well as of an abnormality of the brain-gut axis. This visceral hypersensitivity is peripheral and/or central in origin and may be the consequence of digestive inflammation or an anomaly of the nociceptive message treatment at the spinal and/or supraspinal level. Stress is involved in the genesis and maintenance of IBS. Disturbances of the autonomic nervous system are observed in IBS as a consequence of brain-gut axis dysfunction. The contribution of the neurosciences, in particular brain imaging techniques, has contributed to the better understanding of IBS physiopathology. The better knowledge of brain-gut axis dysfunction has therapeutic implications, either through drugs and/or cognitive and behavioral therapies.
Article
Indigenous microbiota have several beneficial effects on host physiological functions; however, little is known about whether or not postnatal microbial colonization can affect the development of brain plasticity and a subsequent physiological system response. In a series of experiments using germ-free (GF), specific pathogen-free (SPF), and gnotobiotic mice, we recently demonstrated that gut microbes could affect the development of hypothalamic-pituitary-adrenal (HPA) reaction to stress. In this study, in order to further verify these findings, we performed glucocorticoid-suppression test in GF and SPF mice. In addition, norepinephrine (NE), serotonin (5-HT), and γ-aminobutyric acid (GABA) levels in various lesions of the brain were measured in both groups of mice. As a result, corticosterone pretreatment dose-dependently suppressed plasma ACTH response to restraint stress to a significantly lesser extent in GF mice than in SPF mice. GF mice exhibited increased NE and 5-HT levels in the cortex and hippocampus relative to SPF mice, although there was no difference in GABA concentration in any parts of the brain between either group of mice. These results further support the concept that the series of events in the gastrointestinal tract following postnatal microbial colonization can have a long-lasting impact on the neural processing of sensory information regarding the endocrine–stress axis.
Article
There is a bidirectional relation between the central nervous system and the digestive tract, i.e., the brain-gut axis. Numerous data argue for a dysfunction of the brain-gut axis in the pathophysiology of irritable bowel syndrome (IBS). Visceral hypersensitivity is a marker of IBS as well as of an abnormality of the brain-gut axis. This visceral hypersensitivity is peripheral and/or central in origin and may be the consequence of digestive inflammation or an anomaly of the nociceptive message treatment at the spinal and/or supraspinal level. Stress is involved in the genesis and maintenance of IBS. Disturbances of the autonomic nervous system are observed in IBS as a consequence of brain-gut axis dysfunction. The contribution of the neurosciences, in particular brain imaging techniques, has contributed to the better understanding of IBS physiopathology. The better knowledge of brain-gut axis dysfunction has therapeutic implications, either through drugs and/or cognitive and behavioral therapies.
Article
There is increasing interest in the gut-brain axis and the role intestinal microbiota may play in communication between these two systems. Acquisition of intestinal microbiota in the immediate postnatal period has a defining impact on the development and function of the gastrointestinal, immune, neuroendocrine and metabolic systems. For example, the presence of gut microbiota regulates the set point for hypothalamic-pituitary-adrenal (HPA) axis activity. We investigated basal behavior of adult germ-free (GF), Swiss Webster female mice in the elevated plus maze (EPM) and compared this to conventionally reared specific pathogen free (SPF) mice. Additionally, we measured brain mRNA expression of genes implicated in anxiety and stress-reactivity. Germ-free mice, compared to SPF mice, exhibited basal behavior in the EPM that can be interpreted as anxiolytic. Altered GF behavior was accompanied by a decrease in the N-methyl-D-aspartate receptor subunit NR2B mRNA expression in the central amygdala, increased brain-derived neurotrophic factor expression and decreased serotonin receptor 1A (5HT1A) expression in the dentate granule layer of the hippocampus. We conclude that the presence or absence of conventional intestinal microbiota influences the development of behavior, and is accompanied by neurochemical changes in the brain.
Article
Early life stress has been implicated in many psychiatric disorders ranging from depression to anxiety. Maternal separation in rodents is a well-studied model of early life stress. However, stress during this critical period also induces alterations in many systems throughout the body. Thus, a variety of other disorders that are associated with adverse early life events are often comorbid with psychiatric illnesses, suggesting a common underlying aetiology. Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is thought to involve a dysfunctional interaction between the brain and the gut. Essential aspects of the brain-gut axis include spinal pathways, the hypothalamic pituitary adrenal axis, the immune system, as well as the enteric microbiota. Accumulating evidence suggest that stress, especially in early life, is a predisposing factor to IBS. The objective of this review was to assess and compile the most relevant data on early life stress and alterations at all levels of the brain gut axis. In this review, we describe the components of the brain-gut axis individually and how they are altered by maternal separation. The separated phenotype is characterised by alterations of the intestinal barrier function, altered balance in enteric microflora, exaggerated stress response and visceral hypersensitivity, which are all evident in IBS. Thus, maternally separated animals are an excellent model of brain-gut axis dysfunction for the study of disorders such as IBS and for the development of novel therapeutic interventions.
Article
The concept that intestinal microbial composition not only affects the health of the gut, but also influences centrally-mediated systems involved in mood, is supported by a growing body of literature. Despite the emergent interest in brain-gut communication and its possible role in the pathogenesis of psychiatric disorders such as depression, particularly subtypes with accompanying gastrointestinal (GI) symptoms, there are few studies dedicated to the search for therapeutic solutions that address both central and peripheral facets of these illnesses. This study aims to assess the potential benefits of the probiotic Bifidobacterium infantis in the rat maternal separation (MS) model, a paradigm that has proven to be of value in the study of stress-related GI and mood disorders. MS adult rat offsprings were chronically treated with bifidobacteria or citalopram and subjected to the forced swim test (FST) to assess motivational state. Cytokine concentrations in stimulated whole blood samples, monoamine levels in the brain, and central and peripheral hypothalamic-pituitary-adrenal (HPA) axis measures were also analysed. MS reduced swim behavior and increased immobility in the FST, decreased noradrenaline (NA) content in the brain, and enhanced peripheral interleukin (IL)-6 release and amygdala corticotrophin-releasing factor mRNA levels. Probiotic treatment resulted in normalization of the immune response, reversal of behavioral deficits, and restoration of basal NA concentrations in the brainstem. These findings point to a more influential role for bifidobacteria in neural function, and suggest that probiotics may have broader therapeutic applications than previously considered.
Article
Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve.
Article
An increase in inflammatory response and an imbalance between T-helper (Th) 1 and 2 functions have been implicated in major depression. The aims of the present study were to 1) study the relationship between pro- and anti-inflammatory cytokines and between Th1 and Th2 produced cytokines in depressed patients and 2) evaluate and compare the effect of treatments with electroacupuncture (EA) and fluoxetine on these cytokines. 95 outpatients with major depressive disorder were treated for 6 weeks with EA, fluoxetine or placebo. Hamilton Depression Rating Scale (HDRS) and Clinical Global Impression (CGI) were used to assess severity and therapeutic effects. 30 volunteers served as controls. Serum cytokine concentrations were measured by ELISA. Increased proinflammatory cytokine interleukin (IL)-1beta and decreased anti-inflammatory cytokine IL-10 were found in the depressed patients. By contract, Th1 produced proinflammatory cytokines, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were decreased, and Th2 produced cytokine IL-4 was significantly increased in depressed patients. The ratio of IFN/IL-4 was also increased. Both acupuncture and fluoxetine treatments, but not the placebo, reduced IL-1beta concentrations in responders. However, only acupuncture attenuated TNF-alpha concentration and INF-gamma/IL-4 ratio towards the control level. These results suggest that an imbalance between the pro- and anti-inflammatory cytokines (IL-1 and IL-10), and between Th1 and Th2 cytokines (INF-gamma or TNF-alpha and IL-4) occurred in untreated depressed patients. Both EA and fluoxetine had an anti-inflammatory effect by reducing IL-1beta. EA treatment also restored the balance between Th1 and Th2 systems by increasing TNF-alpha and decreasing IL-4.
Article
Although many people are aware of the communication that occurs between the gastrointestinal (GI) tract and the central nervous system, fewer know about the ability of the central nervous system to influence the microbiota or of the microbiota's influence on the brain and behavior. Within the GI tract, the microbiota have a mutually beneficial relationship with their host that maintains normal mucosal immune function, epithelial barrier integrity, motility, and nutrient absorption. Disruption of this relationship alters GI function and disease susceptibility. Animal studies suggest that perturbations of behavior, such as stress, can change the composition of the microbiota; these changes are associated with increased vulnerability to inflammatory stimuli in the GI tract. The mechanisms that underlie these alterations are likely to involve stress-induced changes in GI physiology that alter the habitat of enteric bacteria. Furthermore, experimental perturbation of the microbiota can alter behavior, and the behavior of germ-free mice differs from that of colonized mice. Gaining a better understanding of the relationship between behavior and the microbiota could provide insight into the pathogenesis of functional and inflammatory bowel disorders.
Article
Gut microflora-mucosal interactions may be involved in the pathogenesis of irritable bowel syndrome (IBS). To investigate the efficacy of a novel prebiotic trans-galactooligosaccharide in changing the colonic microflora and improve the symptoms in IBS sufferers. In all, 44 patients with Rome II positive IBS completed a 12-week single centre parallel crossover controlled clinical trial. Patients were randomized to receive either 3.5 g/d prebiotic, 7 g/d prebiotic or 7 g/d placebo. IBS symptoms were monitored weekly and scored according to a 7-point Likert scale. Changes in faecal microflora, stool frequency and form (Bristol stool scale) subjective global assessment (SGA), anxiety and depression and QOL scores were also monitored. The prebiotic significantly enhanced faecal bifidobacteria (3.5 g/d P < 0.005; 7 g/d P < 0.001). Placebo was without effect on the clinical parameters monitored, while the prebiotic at 3.5 g/d significantly changed stool consistency (P < 0.05), improved flatulence (P < 0.05) bloating (P < 0.05), composite score of symptoms (P < 0.05) and SGA (P < 0.05). The prebiotic at 7 g/d significantly improved SGA (P < 0.05) and anxiety scores (P < 0.05). The galactooligosaccharide acted as a prebiotic in specifically stimulating gut bifidobacteria in IBS patients and is effective in alleviating symptoms. These findings suggest that the prebiotic has potential as a therapeutic agent in IBS.
Article
Antidepressant drugs have been suggested to regulate synaptic transmission and structure. We hypothesised that antidepressant-induced changes in synapses and their associated proteins might become more apparent if they were measured under conditions of reduced synapse density. Therefore, in the present study, we examined whether chronic treatment with the antidepressant, fluoxetine alters expression of synaptic proteins in the hippocampus of rodents that underwent ovariectomy, a procedure which reportedly decreases synapse density in the CA1 region of the rat hippocampus. Using Western blotting, we measured changes in hippocampal expression of proteins associated with synapse structure, strength and activity namely, postsynaptic density protein 95 (PSD-95), the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) subunit GluR1 and phosphosynapsin (Ser9), respectively. We found that fluoxetine treatment increased expression of phosphosynapsin, PSD-95 and synaptic GluR1 (but not total GluR1) in the hippocampus of ovariectomized but not sham rats.
Article
Adverse early life events are associated with a maladaptive stress response system and might increase the vulnerability to disease in later life. Several disorders have been associated with early life stress, ranging from depression to irritable bowel syndrome. This makes the identification of the neurobiological substrates that are affected by adverse experiences in early life invaluable. The purpose of this study was to assess the effect of early life stress on the brain-gut axis. Male rat pups were stressed by separating them from their mothers for 3 hours daily between postnatal days 2-12. The control group was left undisturbed with their mothers. Behavior, immune response, stress sensitivity, visceral sensation, and fecal microbiota were analyzed. The early life stress increased the number of fecal boli in response to a novel stress. Plasma corticosterone was increased in the maternally separated animals. An increase in the systemic immune response was noted in the stressed animals after an in vitro lipopolysaccharide challenge. Increased visceral sensation was seen in the stressed group. There was an alteration of the fecal microbiota when compared with the control group. These results show that this form of early life stress results in an altered brain-gut axis and is therefore an important model for investigating potential mechanistic insights into stress-related disorders including depression and IBS.
Article
Data suggest that subjects with irritable bowel syndrome are more likely to report a recent course of antibiotics. This study tests the hypothesis that a course of antibiotics is a risk factor for an increase in the number of functional bowel complaints over a 4-month period in a general population sample. We initiated a prospective case-control study in three general practices in South London. Consecutive patients aged 16-49 attending their general practitioner with non-GI complaints and given a prescription for antibiotics were invited to participate. Comparison subjects who had not had antibiotics for 1 yr were identified from the practice records by age group, gender, and previous general practitioner visits. Fifty-eight antibiotic and 65 control patients agreed to participate. Questionnaires covering demographic, GI, and psychological data were sent at recruitment and at 4 months. Seventy-four percent of subjects completed the study. The number of symptoms at follow-up compared to that at recruitment. Twenty of 42 antibiotic subjects (48%) versus 11/49 control subjects (22%) demonstrated one or more additional functional bowel symptoms at 4 months (unadjusted odds ratio = 3.14 [1.27-7.75]) (chi2 = 6.4, p = 0.01). Ten of 42 antibiotic subjects (24%) versus 3/49 control subjects (6%) demonstrated two or more additional functional bowel symptoms at 4 months (unadjusted odds ratio = 4.79 [1.22-18.80]) (chi2 = 5.8, p = 0.02). Functional bowel symptoms come and go, but subjects who are given a course of antibiotics are more than three times as likely to report more bowel symptoms 4 months later than controls.
Article
We examined the fecal microflora of 1-3-month-old infants during treatment with phenoxymethylpenicillin, amoxycillin, pivampicillin, cefaclor, cefadroxil, loracarbef, erythromycin or cotrimoxazole. Escherichia coli increased during treatment with penicillins or cephalosporins, but was not affected by erythromycin or cotrimoxazole. Other enterobacteria were acquired or increased during treatment with all agents except cotrimoxazole. Enterococci persisted or increased during phenoxymethylpenicillin, cephalosporin or cotrimoxazole treatment, whereas erythromycin and the other penicillins suppressed them. Bacteroides, bifidobacteria and lactobacilli were suppressed to undetectable levels in most infants during treatment with all agents, except phenoxymethylpenicillin and loracarbef.
Article
Chronic psychological stress is an important factor in relapses of intestinal disorders, but it remains unclear if stress can induce primary gut inflammation in a previously healthy host. Mast cell-deficient (Ws/Ws) rats and wild-type control (+/+) rats were submitted to water avoidance stress or sham stress (1 h/day) for 10 consecutive days, as a model of ongoing life stress. Both rat groups had similar systemic responses to stress, as assessed by changes in weight, corticosterone levels, and defecation. In +/+ rats, chronic stress induced barrier dysfunction in the ileum and colon (increased macromolecular permeability and depletion of mucus) and ultrastructural changes in epithelial cells (enlarged mitochondria and presence of autophagosomes) associated with bacterial adhesion and penetration into enterocytes. Moreover, hyperplasia and activation of mast cells, infiltration of neutrophils and mononuclear cells, and increased myeloperoxidase (MPO) activity were documented in the mucosa. In intestine of Ws/Ws rats, epithelial function and morphology were unchanged by chronic stress, bacterial-epithelial cell interaction was not demonstrated, and there was no evidence of inflammatory cell infiltration. These findings suggest that chronic psychological stress can be an initiating factor in intestinal inflammation by impairing mucosal defenses against luminal bacteria and highlight the importance of mast cells in this process.
Article
Infections with bacterial pathogens can induce increased anxiety-like behaviors in rodents without otherwise noticeable behavioral or physiological symptoms of sickness, as shown with the food-borne pathogen Campylobacter jejuni. This observation implicates the ability of the brain to sense, and respond to, such an infection. We tested our hypothesis that intestinal infection with the gram-negative bacterium C. jejuni leads to activation of certain brain regions that process gastro-intestinal sensory information. The induction of c-Fos protein as a marker for neuronal activation was assessed in the brains of mice inoculated orally with live C. jejuni, as compared to saline-treated controls. Upon colonization of the intestines, C. jejuni activated visceral sensory nuclei in the brainstem (the nucleus of the solitary tract and the lateral parabrachial nucleus) both one and two days after the oral challenge. In addition, increased c-Fos expression occurred in the hypothalamic paraventricular nucleus on the second day. This neural response occurred in the absence of measurable systemic immune activation, as serum levels of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6 were undetectable and/or unchanged. These findings support the notion that information about infection with C. jejuni in the gut is indeed relayed to the visceral sensory structures in the brain. The brain responses observed could contribute to changes in behavior observed after infection.
Article
Indigenous microbiota have several beneficial effects on host physiological functions; however, little is known about whether or not postnatal microbial colonization can affect the development of brain plasticity and a subsequent physiological system response. To test the idea that such microbes may affect the development of neural systems that govern the endocrine response to stress, we investigated hypothalamic-pituitary-adrenal (HPA) reaction to stress by comparing germfree (GF), specific pathogen free (SPF) and gnotobiotic mice. Plasma ACTH and corticosterone elevation in response to restraint stress was substantially higher in GF mice than in SPF mice, but not in response to stimulation with ether. Moreover, GF mice also exhibited reduced brain-derived neurotrophic factor expression levels in the cortex and hippocampus relative to SPF mice. The exaggerated HPA stress response by GF mice was reversed by reconstitution with Bifidobacterium infantis. In contrast, monoassociation with enteropathogenic Escherichia coli, but not with its mutant strain devoid of the translocated intimin receptor gene, enhanced the response to stress. Importantly, the enhanced HPA response of GF mice was partly corrected by reconstitution with SPF faeces at an early stage, but not by any reconstitution exerted at a later stage, which therefore indicates that exposure to microbes at an early developmental stage is required for the HPA system to become fully susceptible to inhibitory neural regulation. These results suggest that commensal microbiota can affect the postnatal development of the HPA stress response in mice.
Article
The aim of this study was to compare the response of symptoms and cytokine ratios in irritable bowel syndrome (IBS) with ingestion of probiotic preparations containing a lactobacillus or bifidobacterium strain. Seventy-seven subjects with IBS were randomized to receive either Lactobacillus salivarius UCC4331 or Bifidobacterium infantis 35624, each in a dose of 1 x 10 10 live bacterial cells in a malted milk drink, or the malted milk drink alone as placebo for 8 weeks. The cardinal symptoms of IBS were recorded on a daily basis and assessed each week. Quality of life assessment, stool microbiologic studies, and blood sampling for estimation of peripheral blood mononuclear cell release of the cytokines interleukin (IL)-10 and IL-12 were performed at the beginning and at the end of the treatment phase. For all symptoms, with the exception of bowel movement frequency and consistency, those randomized to B infantis 35624 experienced a greater reduction in symptom scores; composite and individual scores for abdominal pain/discomfort, bloating/distention, and bowel movement difficulty were significantly lower than for placebo for those randomized to B infantis 35624 for most weeks of the treatment phase. At baseline, patients with IBS demonstrated an abnormal IL-10/IL-12 ratio, indicative of a proinflammatory, Th-1 state. This ratio was normalized by B infantis 35624 feeding alone. B infantis 35624 alleviates symptoms in IBS; this symptomatic response was associated with normalization of the ratio of an anti-inflammatory to a proinflammatory cytokine, suggesting an immune-modulating role for this organism, in this disorder.
Article
The forced swim test (FST) is the most widely used model for assessing potential antidepressant activity in rodents following acute or short-term treatment. However, few studies have compared the effects of short- and long-term antidepressant treatment on behaviors in the test, despite the need to treat patients chronically to produce clinical effects. The current studies examined whether antidepressants from different classes produce different behavioral effects following short-term treatment and whether such effects change following administration for a longer duration. The effects of administering short-term (3 days) and long-term (14 days) treatments of antidepressants from three different chemical classes with distinct mechanisms of action via osmotic minipump were examined: the selective norepinephrine reuptake inhibitor reboxetine (10 and 60 mg kg(-1) day(-1)), the selective serotonin reuptake inhibitor fluoxetine (2.5 and 15 m