ArticlePDF Available

Abstract and Figures

This paper introduces a three-item "Cognitive Reflection Test" (CRT) as a simple measure of one type of cognitive ability--the ability or disposition to reflect on a question and resist reporting the first response that comes to mind. The author will show that CRT scores are predictive of the types of choices that feature prominently in tests of decision-making theories, like expected utility theory and prospect theory. Indeed, the relation is sometimes so strong that the preferences themselves effectively function as expressions of cognitive ability--an empirical fact begging for a theoretical explanation. The author examines the relation between CRT scores and two important decision-making characteristics: time preference and risk preference. The CRT scores are then compared with other measures of cognitive ability or cognitive "style." The CRT scores exhibit considerable difference between men and women and the article explores how this relates to sex differences in time and risk preferences. The final section addresses the interpretation of correlations between cognitive abilities and decision-making characteristics.
Content may be subject to copyright.
Cognitive Reflection and Decision Making
Shane Frederick
eople with higher cognitive ability (or “IQ”) differ from those with lower
cognitive ability in a variety of important and unimportant ways. On
average, they live longer, earn more, have larger working memories, faster
reaction times and are more susceptible to visual illusions (Jensen, 1998). Despite
the diversity of phenomena related to IQ, few have attempted to understand— or
even describe—its influences on judgment and decision making. Studies on time
preference, risk preference, probability weighting, ambiguity aversion, endowment
effects, anchoring and other widely researched topics rarely make any reference to
the possible effects of cognitive abilities (or cognitive traits).
Decision researchers may neglect cognitive ability because they are more
interested in the average effect of some experimental manipulation. On this view,
individual differences (in intelligence or anything else) are regarded as a
nuisance—as just another source of “unexplained” variance. Second, most studies
are conducted on college undergraduates, who are widely perceived as fairly
homogenous. Third, characterizing performance differences on cognitive tasks
requires terms (“IQ” and “aptitudes” and such) that many object to because of their
association with discriminatory policies. In short, researchers may be reluctant to
study something they do not find interesting, that is not perceived to vary much
within the subject pool conveniently obtained, and that will just get them into
trouble anyway.
But as Lubinski and Humphreys (1997) note, a neglected aspect does not
cease to operate because it is neglected, and there is no good reason for ignoring
the possibility that general intelligence or various more specific cognitive abilities are
important causal determinants of decision making. To provoke interest in this
Shane Frederick is Assistant Professor of Management Science, Sloan School of Manage-
ment, Massachusetts Institute of Technology, Cambridge Massachusetts. His e-mail address is
Journal of Economic Perspectives—Volume 19, Number 4—Fall 2005—Pages 25– 42
neglected topic, this paper introduces a three-item “Cognitive Reflection Test”
(CRT) as a simple measure of one type of cognitive ability. I will show that CRT
scores are predictive of the types of choices that feature prominently in tests of
decision-making theories, like expected utility theory and prospect theory. Indeed,
the relation is sometimes so strong that the preferences themselves effectively
function as expressions of cognitive ability—an empirical fact begging for a theo-
retical explanation.
After introducing the CRT, I examine its relations with two important decision-
making characteristics: time preference and risk preference. The CRT is then
compared with other measures of cognitive ability or cognitive “style,” including the
Wonderlic Personnel Test (WPT), the Need For Cognition scale (NFC) and self-
reported SAT and ACT scores. The CRT exhibits considerable difference between
men and women, and I discuss how this relates to sex differences in time and risk
preferences. The final section discusses the interpretation of correlations between
cognitive abilities and decision-making characteristics.
The Cognitive Reflection Test (CRT)
Many researchers have emphasized the distinction between two types of cog-
nitive processes: those executed quickly with little conscious deliberation and those
that are slower and more reflective (Epstein, 1994; Sloman, 1996; Chaiken and
Trope, 1999; Kahneman and Frederick, 2002). Stanovich and West (2000) called
these “System 1” and “System 2” processes, respectively. System 1 processes occur
spontaneously and do not require or consume much attention. Recognizing that
the face of the person entering the classroom belongs to your math teacher involves
System 1 processes—it occurs instantly and effortlessly and is unaffected by intel-
lect, alertness, motivation or the difficulty of the math problem being attempted at
the time. Conversely, finding
19163 to two decimal places without a calculator
involves System 2 processes—mental operations requiring effort, motivation, con-
centration, and the execution of learned rules.
The problem
19163 allows no role for System 1. No number spontaneously
springs to mind as a possible answer. Someone with knowledge of an algorithm and
the motivation to execute it can arrive at the exact answer (138.43), but the
problem offers no intuitive solution.
By contrast, consider this problem:
A bat and a ball cost $1.10. The bat costs $1.00 more than the ball.
How much does the ball cost? cents
Here, an intuitive answer does spring quickly to mind: “10 cents.” But this “impul-
sive” answer is wrong. Anyone who reflects upon it for even a moment would
For a discussion of the distinction between System 1 and System 2 in the context of choice heuristics,
see Frederick (2002).
26 Journal of Economic Perspectives
recognize that the difference between $1.00 and 10 cents is only 90 cents, not $1.00
as the problem stipulates. In this case, catching that error is tantamount to solving
the problem, since nearly everyone who does not respond “10 cents” does, in fact,
give the correct response: “5 cents.”
In a study conducted at Princeton, which measured time preferences using
both real and hypothetical rewards, those answering “10 cents” were found to be
significantly less patient than those answering “5 cents.”
Motivated by this result,
two other problems found to yield impulsive erroneous responses were included
with the “bat and ball” problem to form a simple, three-item “Cognitive Reflection
Test” (CRT), shown in Figure 1. The three items on the CRT are “easy” in the sense
that their solution is easily understood when explained, yet reaching the correct
answer often requires the suppression of an erroneous answer that springs “impul-
sively” to mind.
The proposition that the three CRT problems generate an incorrect “intuitive”
answer is supported by several facts. First, among all the possible wrong answers
people could give, the posited intuitive answers (10, 100 and 24) dominate. Second,
even among those responding correctly, the wrong answer was often considered
first, as is apparent from introspection, verbal reports and scribbles in the margin
(for example, 10 cents was often crossed out next to 5 cents, but never the other
way around). Third, when asked to judge problem difficulty (by estimating the
proportion of other respondents who would correctly solve them), respondents who
missed the problems thought they were easier than the respondents who solved
them. For example, those who answered 10 cents to the “bat and ball” problem
estimated that 92 percent of people would correctly solve it, whereas those who
answered “5 cents” estimated that “only” 62 percent would. (Both were consider-
able overestimates.) Presumably, the “5 cents” people had mentally crossed out
10 cents and knew that not everyone would do this, whereas the “10 cents” people
The “bat and ball” problem was subsequently used by Nagin and Pogarsky (2003) in a laboratory
experiment on cheating. When respondents could obtain a $20 reward for correctly answering six trivia
questions, those answering 10 cents were significantly more likely to defy the experimenter’s request to
complete the task without looking at the answers.
Figure 1
The Cognitive Reflection Test (CRT)
(1) A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball.
How much does the ball cost? _____ cents
(2) If it takes 5 machines 5 minutes to make 5 widgets, how long would it take
100 machines to make 100 widgets? _____ minutes
(3) In a lake, there is a patch of lily pads. Every day, the patch doubles in size.
If it takes 48 days for the patch to cover the entire lake, how long would it
take for the patch to cover half of the lake? _____ days
Shane Frederick 27
thought the problem was too easy to miss. Fourth, respondents do much better on
analogous problems that invite more computation. For example, respondents miss
the “bat and ball” problem far more often than they miss the “banana and bagel”
problem: “A banana and a bagel cost 37 cents. The banana costs 13 cents more than
the bagel. How much does the bagel cost?”
The CRT was administered to 3,428 respondents in 35 separate studies over a
26-month period beginning in January 2003. Most respondents were undergradu-
ates at various universities in the midwest and northeast who were paid $8 to
complete a 45-minute questionnaire that included the CRT and measures of
various decision-making characteristics, like time and risk preferences.
On the
page on which the CRT appeared, respondents were told only: “Below are several
problems that vary in difficulty. Try to answer as many as you can.”
Table 1 shows the mean scores at each location and the percentage answering
0, 1, 2 or 3 items correctly. Most of the analyses that follow compare the “low” group
(those who scored 0 out of 3) with the “high” group (those who scored 3 out of 3).
The two “intermediate” groups (those who scoreda1or2)typically fell between
the two extreme groups on whatever dependent measure was analyzed. Thus,
focusing attention on the two “extreme” groups simplifies the exposition and
analysis without affecting the conclusions.
Since more of the respondents were college students from selective schools,
the two “extreme” groups that formed the basis for most statistical comparisons
were far more similar in cognitive abilities than two extreme groups formed from
the general population. Thus, the group differences reported here likely understate
the differences that would have been observed if a more representative sample had
been used.
Cognitive Reflection and Time Preferences
The notion that more intelligent people are more patient—that they devalue
or “discount” future rewards less—has prevailed for some time. For example, in his
New Principles of Political Economy (1834, pp. 57), Rae writes: “The strength of the
intellectual powers, giving rise to reasoning and reflective habits. . . brings before us
the future. . . in its legitimate force, and urge the propriety of providing for it.”
The widely presumed relation between cognitive ability and patience has been
tested in several studies, although rather unsystematically. Melikian (1959) asked
children from five to twelve years of age to draw a picture of a man, which they
could exchange for either 10 fils (about 3 cents) or for a “promissory note”
redeemable for 20 fils two days later. Those who opted for the promissory note
scored slightly higher on an intelligence test based on an assessment of those
There were three exceptions to this: 1) the participants from Carnegie Mellon University completed
the survey as part of class; 2) the 4
of July participants received “only” a frozen ice cream bar; and 3) the
participants from the web study were unpaid, although they were entered into a lottery for iPods and
other prizes.
28 Journal of Economic Perspectives
Funder and Block (1989) paid 14 year-olds to participate in six exper-
imental sessions. For each of the first five sessions, they could choose between
receiving $4 or foregoing (“investing”) their $4 payment for $4.80 in the sixth and
final session. The teenagers with higher IQs chose to invest more of their money.
In a follow-up to an extensive series of experiments investigating the ability of
preschool children to delay gratification (Mischel, 1974), Shoda, Mischel and
Peake (1990) found that the children who had waited longer before succumbing to
the impulse to take an immediately available inferior reward scored higher on their
SATs taken over a decade later. Similarly, Parker and Fischhoff (2005) found that
scores on a vocabulary test taken around age eleven predicted the individual’s
tendency, at around age 18, to prefer a larger later reward over a smaller sooner
one (for example, $120 in four weeks to $100 tomorrow). Using small real rewards,
Benjamin and Shapiro (2005) found that respondents with higher SAT math scores
Given the relatively wide range of ages in this study, it remains unclear whether this relation is
attributable to intelligence, per se, or to age, which might correlate with the development of artistic skill
or patience or trust or some other specific trait that can be distinguished from cognitive ability.
Table 1
CRT Scores, by Location
Locations at which data were collected Mean CRT score
Percentage scoring 0, 1, 2 or 3
Massachusetts Institute of Technology 2.18 7% 16% 30% 48% 61
Princeton University 1.63 18% 27% 28% 26% 121
Boston fireworks display
1.53 24% 24% 26% 26% 195
Carnegie Mellon University 1.51 25% 25% 25% 25% 746
Harvard University
1.43 20% 37% 24% 20% 51
University of Michigan: Ann Arbor 1.18 31% 33% 23% 14% 1267
Web-based studies
1.10 39% 25% 22% 13% 525
Bowling Green University 0.87 50% 25% 13% 12% 52
University of Michigan: Dearborn 0.83 51% 22% 21% 6% 154
Michigan State University 0.79 49% 29% 16% 6% 118
University of Toledo 0.57 64% 21% 10% 5% 138
Overall 1.24 33% 28% 23% 17% 3428
Respondents in this study were people picnicking along the banks of the Charles River prior to
the July 4
fireworks display. Their ages ranged from 15 to 63, with a mean of 24. Many of the younger
participants were presumably students at a college in the Boston or Cambridge area. Most completed the
survey in small groups of friends or family. Although they were requested not to discuss it until everyone
in their group had completed it, some may have. (This, presumably, would elevate the CRT scores
relative to most of the other studies in which participation was more closely supervised.)
The participants in this study were all members of a student choir group, which was predominately
female. Unlike the other locations in which the numbers of men and women were comparable, 42 of 51
participants in this study were women.
These were participants in two online studies, consisting of both college students and others whose
e-mail addresses were obtained from online retailers.
Cognitive Reflection and Decision Making 29
(or their Chilean equivalent) were more likely to choose a larger later reward over
a smaller sooner one (for example, to prefer a postdated check for $5.05 over a
$5.00 check that can be immediately cashed). However, Monterosso et al. (2001)
found no relation between the IQ of cocaine addicts and their imputed discount
rates, and Kirby, Winston and Santiesteban (2005) found no reliable relation
between students’ SAT scores and the amount they would bid for a delayed
monetary reward (although they did find that college grade point averages corre-
lated positively with those bids).
Collectively, these studies support the view that cognitive ability and time
preference are somehow connected, though they have not generally focused on the
types of intertemporal decisions over which cognitive ability exerts influence, nor
explained why it does so.
Toward this end, I examined the relation between CRT
scores and various items intended to measure different aspects of “time prefer-
ence.” As shown in Table 2, these included several hypothetical choices between an
immediate reward and a larger delayed reward (items a through e), an immediate
reward and a sequence of delayed rewards (items f through h), a shorter more
immediate massage and longer more delayed massage (item i) and a smaller
immediate loss or a larger delayed loss (items j and k).
Item l asked respondents
to state their maximum willingness to pay to have a book shipped overnight rather
than waiting two weeks. Item m involved real money. Through a series of choices,
respondents specified the smallest amount of money in four days that they would
prefer to $170 in two months, and one of them was selected to actually receive one
of their choices. Items n through q asked respondents to report their impulsivity,
procrastination, preoccupation with their future and concerns about inflation on
an 11-point scale ranging from –5 (much less than the average person taking this
survey today) to 5 (much more than the average person taking this survey today).
Table 2 shows the responses of the low and high CRT groups for each of the
17 items. The reported value is either the percentage choosing the patient option
or the mean response. The subscripts are the total number of respondents in the
low and high CRT groups who answered that item. The rightmost column reports
the level of statistical significance of group differences—the p-values from a chi-
square test (for dichotomous responses) or a t-test (for continuous responses).
Those who scored higher on the CRT were generally more “patient”; their
decisions implied lower discount rates. For short-term choices between monetary
rewards, the high CRT group was much more inclined to choose the later larger
Shoda, Mischel and Peake (1990) examined preschoolers’ willingness to wait (for additional marsh-
mallows and pretzels and such) under four experimental conditions. They found that patience pre-
dicted SAT scores in only one of their four conditions—when the attractive but inferior reward was
visually exposed and no distraction technique (such as “think fun”) was suggested. In the other three
conditions, patient behavior was actually negatively correlated with subsequent SAT scores.
I assumed that delaying the extraction of a tooth involved a larger delayed loss, because during the
intervening two weeks, one will suffer additional toothache pain, or additional disutility from dreading
the forthcoming extraction pain, and that the only reason for not doing it immediately was that future
pain was discounted relative to immediate pain.
Among the items in Table 2, men were more patient for items c, k and l, and they worried more about
inflation. There were no significant differences between men and women for any other item.
30 Journal of Economic Perspectives
reward (see items a and b). However, for choices involving longer horizons (items
c through h), temporal preferences were weakly related or unrelated to CRT scores.
A tentative explanation for these results is as follows: a thoughtful respondent
can find good reasons for discounting future monetary outcomes at rates exceeding
the prevailing interest rate—the promiser could default, one may be predictably
wealthier in the future (with correspondingly diminished marginal utility for
further wealth gains), interest rates could increase (which increases the opportu-
nity cost of foregoing the immediate reward), and inflation could reduce the future
rewards’ real value (if the stated amounts are interpreted as being denominated in
nominal units).
Collectively, these reasons could, for example, justify choosing $9
now over $100 in 10 years (item d), even though the implied discount rate of such
a choice (27 percent), exceeds market interest rates. However, such reasons are not
sufficiently compelling to justify choosing $3400 this month over $3800 next month
(which implies an annual discount rate of 280 percent). Hence, one observes
considerable differences between CRT groups for choices like those in items a and
b, where more careful deliberation or “cognitive reflection” should argue strongly
in favor of the later larger reward, but negligible differences for many of the other
items, for which additional reflection would not make such a strong case for the
larger later reward (although one might argue that additional reflection should
Frederick, Loewenstein and O’Donoghue (2002) offer a detailed and extended discussion of the
conceptual dissection of imputed discount rates and discuss many reasons why choices between
monetary rewards are problematic for measuring pure time preference.
Table 2
Intertemporal Behavior for Low and High CRT Groups
(percentage choosing patient option or mean response)
Item Intertemporal Choice or Judgment
CRT group
Stat. Signif.Low High
a $3400 this month or $3800 next month 35%
p 0.0001
b $100 now or $140 next year 22%
p 0.0001
c $100 now or $1100 in 10 years 47%
p 0.05
d $9 now or $100 in 10 years 40%
p 0.10
e $40 immediately or $1000 in 10 years 50%
f $100 now or $20 every year for 7 years 28%
g $400 now or $100 every year for 10 years 64%
h $1000 now or $100 every year for 25 years 52%
i 30 min. massage in 2 weeks or 45 min. massage in Nov. 28%
j Lose $1000 this year or lose $2000 next year 78%
k Tooth pulled today or tooth pulled in 2 weeks 59%
l Willingness to pay for overnight shipping of chosen book $4.54
p 0.0001
m Smallest amount in 4 days preferred to $170 in 2 months $116
p 0.01
n How impulsive are you? 1.01
p 0.001
o How much do you tend to procrastinate? 1.05
p How much do you think about your future? 2.49
p 0.01
q How much do you worry about inflation? 1.16
p 0.01
Shane Frederick 31
reveal the wisdom of choosing the delayed 45-minute massage, since one will likely
still be alive, still be stressed and sore, still like massages, and still derive greater
benefits from longer ones).
It appears that greater cognitive reflection fosters the recognition or appreci-
ation of considerations favoring the later larger reward (like the degree to which
the implied interest rate exceeds the rate offered by the market). However, it
remains unclear whether cognitive reflection also influences other determinants of
intertemporal choices (like pure time preference). CRT scores were unrelated to
preferences for the massage and tooth-pull items, which were intended as measures
of pure time preference. On the other hand, those in the low CRT group (the
“cognitively impulsive”) were willing to pay significantly more for the overnight
shipping of a chosen book (item l), which does seem like an expression of an aspect
of pure time preference (the psychological “pain” of waiting for something desired).
Thus, despite the wide variety of items included to help address this issue,
further resolution of the types of psychological characteristics associated with
cognitive reflection (and other cognitive abilities) is still required. Toward this goal,
respondents in some of the later studies were also asked to report several person-
ality characteristics that seemed relevant to intertemporal choices (items n through
q). The self-perceived tendency to procrastinate was unrelated to CRT scores (both
groups thought that they procrastinate more than their peers). However, the high
CRT group perceived themselves to be significantly less impulsive, more concerned
about inflation and (curiously) less preoccupied with their future. The inflation
result supports the idea that the high-scoring groups are more likely to consider
such background factors in their choices between temporally separated monetary
rewards. Its interpretation, however, is ambiguous, since it implies a consideration
of future conditions, but would be a justification for choosing the proximate
Cognitive Reflection and Risk Preferences
In the domain of risk preferences, there is no widely shared presumption
about the influences of cognitive ability and almost no research on the topic.
Donkers, Melenberg and van Soest (2001) found that more educated respondents
were more tolerant of risk in hypothetical gambles: for example, they were more
likely to prefer an 80 percent chance of 45 florins (about $23) over a sure 30 florins
(about $15). Benjamin and Shapiro (2005) found that students with higher scores
on the math section of the SAT (or its Chilean equivalent) were more likely to
choose according to expected value for real decisions involving small stakes (for
example, they were more likely to prefer a 50 percent chance to win $1.05 over a
sure 50 cents).
To assess the relation between CRT and risk preferences, I included several
measures of risk preferences in my questionnaires, including choices between a
certain gain (or loss) and some probability of a larger gain (or loss). For some
32 Journal of Economic Perspectives
items, expected value was maximized by choosing the gamble, and for some it was
maximized by choosing the certain outcome.
The results are shown in Table 3a. In the domain of gains, the high CRT group
was more willing to gamble—particularly when the gamble had higher expected
value (top panel), but, notably, even when it did not (middle panel). If all five items
from the middle panel of Table 3a are aggregated, the high CRT group gambled
significantly more often than the low CRT group (31 percent versus 19 percent;
8.82; p 0.01). This suggests that the correlation between cognitive ability
and risk taking in gains is not due solely to a greater disposition to compute
expected value or to adopt that as the choice criterion.
For items involving losses
(lower panel), the high CRT group was less risk seeking; they were more willing
accept a sure loss to avoid playing a gamble with lower (more negative) expected
Two pairs of items (d versus o and h versus r) were reflections of one another
in the domain of gains and losses. Prospect theory predicts that people will be more
willing to take risks to avoid losses than to achieve gains; that respondents will
switch from risk aversion to risk seeking when the valence of a gamble (or “pros-
pect”) changes from positive to negative (Kahneman and Tversky, 1979). Though
this is spectacularly true for the low CRT group, who are much more willing to
gamble in the domain of losses than in the domain of gains, there is no such
reflection effect among the high CRT group, as shown in Table 3b. This result
starkly shows the importance of considering cognitive ability when evaluating the
descriptive validity of a theory of decision making.
Is the CRT Just Another IQ test?
Of the 3,428 respondents who completed the three-item CRT, many also
completed one or more additional cognitive measures: 921 completed the Won-
derlic Personnel Test (WPT)—a 12-minute, 50-item test used by the National
As expected, the gamble was not popular among either group for any of the “anti-expected-value”
gambles, since risk aversion and expected value both militate against it. However, any factors favoring
the gamble over the sure thing (for example, valuing the excitement of gambling or dismissing the sure
amount as negligibly small) would be more likely to tip preferences in favor of the gamble among those
less averse to it (the high CRT group, as judged from items a through h). The gambles in items i through
m were designed, in part, to have some chance of being chosen (the sure amounts were small, and the
expected values of the gambles were typically close to the sure amount). Including choices in which the
gambles lacked these properties (for example, offering a choice between $4,000 for sure and a 50
percent chance of $5000) would be pointless, because nearly everyone would reject the gamble, leaving
no response variance to analyze. Item i comes close to illustrating this point.
Although the descriptive accuracy of expected utility theory markedly improves for respondents with
higher scores, it cannot explain why a 75 percent chance of $200 is frequently rejected in favor of a sure
$100, across all levels of cognitive ability, since this is a small fraction of one’s wealth, and even a concave
utility function is approximately linear over small changes (Rabin, 2000).
Cognitive Reflection and Decision Making 33
Football League
and other employers to assess the intellectual abilities of their
prospective hires; 944 completed an 18-item “need for cognition” scale (NFC),
which measures the endorsement of statements like “the notion of thinking ab-
Pat McInally, a Harvard graduate who later became a punter for the Cincinnati Bengals, was the only
college football player to score a perfect 50 out of 50 on the Wonderlic—a score attained by only one
person in 30,000. Of the 921 respondents who took it in these studies, the highest score was a 47.
Table 3a
Risk Seeking Behavior among Low and High CRT Groups
Percentage choosing riskier option CRT group
Stat. Signif.Certain gains vs. Higher expected value gambles Low High
a $1,000 for sure or a 90% chance of $5,000 52%
p 0.0001
b $100 for sure or a 90% chance of $500 56%
p 0.01
c $1,000 for sure or a 75% chance of $4,000 37%
p 0.001
d $100 for sure or a 75% chance of $200 19%
p 0.0001
e $100 for sure or a 75% chance of $150 10%
p 0.0001
f $100 for sure or a 50% chance of $300 47%
p 0.05
g $500 for sure or a 15% chance of $1,000,000 31%
p 0.0001
h $100 for sure or a 3% chance of $7,000 8%
p 0.01
Certain gains vs. Lower expected value gambles Low High
i $100 for sure or a 25% chance of $200 7%
j $100 for sure or a 25% chance of $300 14%
k $5 for sure or a 4% chance of $80 29%
l $5 for sure or a 1% chance of $80 27%
m $60 for sure or a 1% chance of $5000 19%
Certain losses vs. Lower expected value gambles Low High
n Lose $10 for sure or a 90% chance to lose $50 24%
o Lose $100 for sure or a 75% chance to lose $200 54%
p 0.0001
p Lose $100 for sure or a 50% chance to lose $300 61%
q Lose $50 for sure or a 10% chance to lose $800 44%
p 0.01
r Lose $100 for sure or a 3% chance to lose $7000 63%
p 0.0001
Table 3b
The Reflection Effect for Low and High CRT Groups
Percentage choosing gamble
in the domain of gains and losses
CRT group
Low High
d $100 for sure or a 75% chance of $200 19%
o Lose $100 for sure or a 75% chance to lose $200 54%
h $100 for sure or a 3% chance of $7,000 8%
r Lose $100 for sure or a 3% chance to lose $7000 63%
34 Journal of Economic Perspectives
stractly is appealing to me” (Cacioppo, Petty and Kao, 1984). Several hundred
respondents also reported their scores on the Scholastic Achievement Test (SAT)
or the American College Test (ACT), the two most common college entrance
Table 4 shows the correlations between cognitive measures. The numbers
above the diagonal are the sample sizes from which these correlations were com-
puted (the number of surveys that included both measures). For example,
152 respondents reported both SAT and ACT scores, and their correlation was 0.77.
As expected, all measures correlate positively and significantly with one another.
The moderate correlations suggest that all five tests likely reflect common factors,
but may also measure distinct characteristics, as they purport to. I have proposed
that the CRT measures “cognitive reflection”—the ability or disposition to resist
reporting the response that first comes to mind. The need for cognition scale
(NFC) is advanced as a measure of someone’s “tendency to engage in and enjoy
thinking” (Cacioppo and Petty, 1982), but relies on self-reports rather than ob-
served behavior. The Wonderlic Personnel Test (WPT) is intended to measure a
person’s general cognitive ability, and the ACT and SAT are described as measures
of academic “achievement.”
Although the various tests are intended to measure conceptually distinguish-
able traits, there are many likely sources of shared variance. For example, though
the CRT is intended to measure cognitive reflection, performance is surely aided by
reading comprehension and mathematical skills (which the ACT and SAT also
measure). Similarly, though NFC and intelligence are distinguishable, the list of
ways in which those with high NFC differ from those with low NFC (see Cacioppi
et al., 1996) sounds very much like the list one would create if people were sorted
on any measure of cognitive ability. Namely, those with higher NFC were found to
do better on arithmetic problems, anagrams, trivia tests and college coursework, to
be more knowledgeable, more influenced by the quality of an argument, to recall
more of the information to which they are exposed, to generate more “task relevant
thoughts” and to engage in greater “information-processing activity.”
The empirical and conceptual overlap between these tests suggests that they
would all predict time and risk preferences and raises the question of their relative
Table 4
Correlations Between Cognitive Measures
CRT 434 434 434 667 921 944
SAT .44 434 434 152 276 64
.46 .77 434 152 276 64
.24 .81 .28 152 276 64
ACT .46 .77 .63 .67 466 190
WPT .43 .49 .40 .37 .48 276
NFC .22 .30 .21 .28 .30 .19
Shane Frederick 35
predictive validities. To assess this issue, I correlated the scores on the various
cognitive measures with composite indices of decision-making characteristics
formed from the time preference items in Table 2 or the risk preference items in
Table 3. The composite scores registered the proportion of patient (or risk seek-
ing) responses. For example, respondents might have been asked whether they
prefer $3,400 this month or $3,800 next month, whether they would prefer a
shorter massage in two weeks or a longer one in November and how much they
would pay for overnight shipping of a book. Respondents who preferred the $3800,
the longer later massage and who were willing to pay less than the median person
for express shipping would be coded as “patient” on all three items and would
receive a score of 1. If they were patient on two of the three items, they would
receive a score of 0.66, and so on. Thus, the indices are scores ranging from 0 to
1, in coarse or fine increments depending on how many questions the respondent
As shown in Table 5, the CRT was either the best or second-best predictor
across all four decision-making domains and the only test related to them all. Thus,
Composite indices were used to measure respondents’ general tendencies within a given decision-
making domain and to permit aggregation across studies. However, unless respondents received
identical items, their scores are not perfectly comparable. This issue is not vital for establishing the
predictive validity of the CRT, because the correlations reflect the pattern plainly observable from the
individual items. However, for the purpose of comparing the cognitive measures, composite indices are
more problematic, because the full battery of cognitive tests was not typically given, and different studies
involved different items. For example, at Carnegie Mellon University, respondents answered items b, d
and l from Table 2 and items a and d from Table 3. The CRT was the only cognitive measure obtained
for these respondents. Thus, these particular items will be disproportionately represented in the
composite decision-making indices with which the CRT is correlated. This problem can be overcome by
doing a pairwise comparison of cognitive measures only for those respondents who were given both.
This more painstaking analysis generally confirms the implications of Table 5—namely, the different
tests often function similarly, but the CRT is a bit more highly correlated with the characteristics of
Table 5
Correlations Between Cognitive Measures and Decision-Making Indices
Intertemporal choice
Choice under uncertainty
(Preferences for gambles across domains)
Gains Losses
Preference for
patient option
Expected value
favors gamble
Expected value
favors sure gain
Expected value
favors sure loss
CRT 0.12****
SAT 0.07
ACT 0.10*
WPT 0.00
NFC 0.06
36 Journal of Economic Perspectives
for researchers interested in separating people into cognitive groups, the CRT is an
attractive test: it involves only three items and can be administered in a minute or
two, yet its predictive validity equals or exceeds other cognitive tests that involve up
to 215 items and take up to 3
hours to complete (or which involve self-reports that
cannot be readily verified).
Sex Differences
Men scored significantly higher than women on the CRT, as shown in Table 6.
The difference is not likely due to a biased sampling procedure, because there were
no significant sex differences for any other cognitive measure, except SAT
scores, for which there was a modest difference corresponding to national averages.
Nor can it be readily attributed to differences in the attention or effort expended
on the survey, since women scored slightly higher on the Wonderlic test, which was
given under identical circumstances (included as part of a 45-minute survey that
recruited respondents were paid to complete).
It appears, instead, that these items measure something that men have more
of. That something may be mathematical ability or interest, since the CRT items
have mathematical content, and men generally score higher than women on math
tests (Benbow and Stanley, 1980; Halpern, 1986; Hyde, Fennema and Lamon, 1990;
Hedges and Nowell, 1995). However, men score higher than women on the CRT,
even controlling for SAT math scores. Furthermore, even if one focuses only on
respondents who gave the wrong answers, men and women differ. Women’s mis-
takes tend to be of the intuitive variety, whereas men make a wider variety of errors.
For example, the women who miss the “widgets” problem nearly always give the
erroneous intuitive answer “100,” whereas a modest fraction of the men give
unexpected wrong answers, such as “20” or “500” or “1.” For every CRT item (and
several other similar items used in a longer variant of the test) the ratio of
“intuitive” mistakes to “other” mistakes is higher for women than for men. Thus,
the data suggest that men are more likely to reflect on their answers and less
inclined to go with their intuitive responses.
Because men score higher, the “high” CRT group is two-thirds men, whereas
the “low” CRT group is two-thirds women. Thus, the differences between CRT
groups may be revealing other male/female differences besides cognitive reflec-
tion. To remove this confound, Table 7 presents results split by both sex and CRT
score for selected items, including a heretofore undiscussed item involving the
willingness to pay for a coin flip in which “heads” pays $100 and “tails” pays nothing.
Four facts are noteworthy. First, CRT scores are more highly correlated with
time preferences for women than for men; the low and high groups differ more.
Second, as suggested by most prior research (Byrnes, Miller and Schafer, 1999,
One might draw the opposite conclusion from self-reports. Using the scale described earlier, respon-
dents were asked “How long do you deliberate before reaching a conclusion?” Women reported higher
scores than men (1.16 vs. 0.45; t
2.32; p0.05).
Cognitive Reflection and Decision Making 37
present an overview), women were considerably more risk averse than men, and
this remains true even after controlling for CRT score. Third, for the selected risk
items, CRT is as important as sex. In other words, high-scoring women behave
almost identically to low-scoring men (compare the upper left and lower right cells
within each of the five items in the lower panel). Fourth, in contrast to the pattern
observed for the time preference items, CRT scores are more highly correlated with
risk preferences for men than for women.
The curious finding that CRT scores are more tightly linked with time pref-
erences for women than for men, but are more tightly linked with risk preferences
for men than for women held for the other tests of cognitive ability, as well.
Expressed loosely, being smart makes women patient and makes men take more
This result was unanticipated and suggests no obvious explanation. The only
related finding of which I am aware is in a study by Shoda, Mischel and Peake
(1990), who found that the patience of preschool girls was strongly related to their
subsequent SAT scores, but the patience of preschool boys was not.
The instructions in studies of decision making commonly reassure respon-
dents that “there are no right or wrong answers.” If this line is sincere, it implies
that researchers will interpret such preferences as they would a choice between
This conclusion can also be expressed less loosely. First, when faced with three mathematical
reasoning problems (“bat and ball,” “widgets” and “lilypads”), certain responses that are plausibly
construed as manifestations of intelligence (“5,” “5” and “47”) tend to correlate positively with certain
other responses that are plausibly construed as expressions of patience (namely, an expressed willing-
ness to wait for larger later rewards), and this tendency is more pronounced in women than men.
Second, the production of the canonically correct responses tends also to correlate positively with
certain responses that are plausibly construed as expressions of risk tolerance (namely, an expressed
willingness to forego a smaller certain reward in favor of a probabalistic larger one), and this tendency
is more pronounced in men than in women. Third, sex differences in risk seeking and in the degree of
relation to CRT scores was true only in the domain of gains. For the selected loss items (n through r in
Table 3), there were no sex differences.
Table 6
Sex Differences in Cognitive Measures
Test Men Women Significance of group difference
CRT 1.47 1.03 p 0.0001
SAT 1334 1324 n.s.
688 666 p 0.01
646 658 n.s.
ACT 26.7 26.3 n.s.
Wonderlic 26.2 26.5 n.s.
NFC 0.91 0.85 n.s.
38 Journal of Economic Perspectives
apples and oranges—as a primitive that neither requires nor permits further
However, unlike a preference between apples and oranges, time and risk
preferences are sometimes tied so strongly to measures of cognitive ability that they
effectively function as such a measure themselves.
For example, when a choice
To encourage respondents to consider each choice carefully, and independently from the other
items, several “filler” choices were inserted between the “focal items.” An analysis of these responses
shows that CRT scores are unrelated to preferences between apples and oranges, Pepsi and Coke, beer
Table 7
Results Split by Both CRT and Sex
(percentage choosing patient option or mean response)
Intertemporal choice or judgment Sex
CRT group
of group
differenceLow High
$3400 this month or $3800 next month Men 39%
Women 39%
$100 this year or $140 next year Men 21%
Women 25%
$100 now or $1100 in 10 years Men 58%
Women 43%
$9 now or $100 in 10 years Men 40%
Women 41%
Willingness to pay for overnight shipping Men $4.05
of chosen book Women $4.54
Risky choice or judgment
(percentage choosing risky option or mean
response) Sex
CRT group
of group
differenceLow High
$100 for sure or a 75% chance of $200 Men 26%
p 0.0001
Women 16%
p 0.01
$500 for sure or a 15% chance of $1,000,000 Men 40%
p 0.0001
Women 25%
$1000 for sure or a 90% chance of $5000 Men 59%
p 0.001
Women 46%
p 0.10
$100 for sure or a 3% chance of $7000 Men 6%
p 0.01
Women 8%
Willingness to pay for a coin flip, where Men $13.00
p 0.001
“HEADS” pays $100 and “TAILS” pays
Women $11.00
Shane Frederick 39
between a sure $500 and a 15 percent chance of $1,000,000 was presented to
respondents along with an eight-item version of the CRT, only 25 percent of those
who missed all eight problems chose the gamble, compared to 82 percent among
those who solved them all. Should this result be interpreted to mean that choosing
the gamble is the “correct” response for this item?
The position that some preferences are better than others and that cognitive
ability is one indicator of the “better” preference is not unprecedented. Savage
(1954) argued that increased understanding ought to increase the frequency of the
“truly” normative response; that preferences that initially contradict some norma-
tive principle may not survive thorough deliberation (what he termed “reflective
Stanovich and West (2000) extended these views, by arguing that
increased understanding may arise from superior intellect (as well as from ex-
tended deliberation or reflection or instruction). In response to those contending
that judgments commonly labeled as errors or biases are actually equally good
answers to different interpretations of the question (for example, Hilton, 1995),
Stanovich and West argued that if smarter respondents were more likely to give
canonically correct answers, the other answers must not be equally good after all.
Some, however, reject the notion that a correlation between (some measure
of) cognitive ability and some particular response identifies the “better” response.
For example, Sternberg (2000, pp. 697– 698) argues: “[T]o characterize people
with high SAT scores as those who should set the norm for what is somehow true
or right seems to be off target. People with high SAT scores have high levels of
certain kinds of cognitive abilities. They have no monopoly on quality of thinking
and certainly no monopoly on truth.”
The prevalence of this view could be directly tested. Respondents could be
shown the respective test scores of those who chose the sure $500 and those who
chose the 15 percent chance of $1,000,000. If Sternberg’s view is widely shared, this
manipulation would have no effect. If, on the other hand, the correlation between
cognitive ability and preference held normative force, making respondents aware
of it would cause many of them to choose the gamble.
Of course, the weight that should be placed on the opinions of those with
higher cognitive abilities clearly depends on the type of decision in question. If one
were deciding between a fixed- and variable-interest mortgage, imitating one’s
and wine or rap concerts and ballet. However, CRT scores are strongly predictive of the choice between
People magazine and the New Yorker. Among the low CRT group, 67 percent preferred People. Among the
high CRT group, 64 percent preferred the New Yorker.
Slovic and Tversky (1974) use an eloquent and entertaining mock debate between Allais and Savage
to illustrate opposing views on the related issue of whether the opinions of people who have deliberated
longer over an issue ought to count more.
Along similar lines, Bar Hillel (1991, p. 413) comments: “Many writers have attempted to defend
seemingly erroneous responses by offering interpretations of subjects’ reasoning that rationalizes their
responses. Sometimes, however, this charitable approach has been misguided, either because the
subjects are quick to acknowledge their error themselves once it is pointed out to them, or because the
interpretation required to justify the response is even more embarrassing than the error it seeks to
40 Journal of Economic Perspectives
brilliant neighbor seems prudent. However, if one were deciding between an apple
and an orange, Einstein’s preference for apples seems irrelevant.
Thus, a relation between cognitive ability and preference does not, by itself,
establish the correct choice for any particular individual. Two individuals with
different cognitive abilities may experience outcomes differently, which may war-
rant different choices (for example, what magazines to read or movies to attend).
But with respect to the example motivating this discussion, one must ask whether
it is plausible that people of differing cognitive abilities experience increments of
wealth as differently as their choices suggest. It seems exceedingly unlikely that the
low CRT group has a marked kink in their utility function around $W 500,
beyond which an extra $999,500 confers little additional benefit. It seems more
reasonable, instead, to override the conventional caveat about arguing with tastes
(Becker and Stigler, 1977) and conclude that choosing the $500 is the “wrong
answer”—much as 10 cents is the wrong answer in the “bat and ball” problem.
Whatever stance one adopts on the contentious normative issues of whether a
preference can be “wrong” and whether more reflective people make “better”
choices, respondents who score differently on the CRT make different choices, and
this demands some explanation.
I thank Dan Ariely, Scott Armstrong, Daniel Benjamin, Brett Boshco, Eric Bradlow, Craig
Fox, Kerri Frederick, Steve Garcia, Timothy Heath, James Hines, Eric Johnson, Daniel
Kahneman, Robyn LeBoeuf, George Loewenstein, Leif Nelson, Nathan Novemsky, Greg
Pogarsky, Drazen Prelec, Daniel Read, Eldar Shafir, Timothy Taylor, Catherine Tucker,
Michael Waldman and Jaclyn Zires for comments received on earlier drafts. A special thanks
to Steve Garcia, who coordinated most of the surveys generating the data summarized here. As
always (but particularly in this case), the views expressed or implied are those of the author
Bar-Hillel, Maya. 1991. “Commentary on Wol-
ford, Taylor, and Beck: The Conjunction Fal-
lacy?” Memory and Cognition. 19:4, pp. 412–14.
Becker, Gary and George Stigler. 1977. “De
Gustibus Non est Disputandum.” American Eco-
nomic Review. 67:2, pp. 76 –90.
Benbow, Camilla P. and J. C. Stanley. 1980.
“Sex Differences in Mathematical Ability: Fact or
Artifact?” Science. 210:4475, pp. 1262–264.
Benjamin, Daniel J. and Jesse M. Shapiro.
2005. “Who is ‘Behavioral?’ Cognitive Ability
and Anomalous Preferences.” Working paper,
Harvard University.
Byrnes, James P., David C. Miller and William
D. Schafer. 1999. “Gender Differences in Risk
Taking: A Meta-Analysis.” Psychological Bulletin.
125:3, pp. 367– 83.
Cacioppo, John T. and Richard E. Petty. 1982.
“The Need for Cognition.” Journal of Personality
and Social Psychology. 42:1, pp. 116 –31.
Cacioppo, John T., Richard E. Petty and
Chuan Feng Kao. 1984. “The Efficient Assess-
ment of Need for Cognition.” Journal of Person-
ality Assessment. 48:3, pp. 306 07.
Cacioppo, John T., Richard E. Petty, Jeffrey
A. Feinstein and W. Blair G. Jarvis. 1996. “Dis-
Cognitive Reflection and Decision Making 41
positional Differences in Cognitive Motivation:
The Life and Times of Individuals Varying in
Need for Cognition.” Psychological Bulletin. 119:2,
pp. 197–253.
Chaiken, Shelly and Yaacov Trope. 1999.
Dual-Process Theories in Social Psychology. New
York: Guilford Press.
Donkers, Bas, Bertrand Melenberg and Arthur
van Soest. 2001. “Estimating Risk Attitudes Us-
ing Lotteries: A Large Sample Approach.” Jour-
nal of Risk and Uncertainty. 22:2, pp. 165–95.
Epstein, Seymour. 1994. “Integration of the
Cognitive and Psychodynamic Unconscious.”
American Psychologist. 49:8, pp. 709 –24.
Frederick, Shane. 2002. “Automated Choice
Heuristics,” in Heuristics and Biases: The Psychology
of Intuitive Judgment. T. Gilovich, D. Griffin and
D. Kahneman, eds. New York: Cambridge Uni-
versity Press, pp. 548–58.
Frederick, Shane, George Loewenstein and
Ted O’Donoghue. 2002. “Time Discounting and
Time Preference: A Critical Review.” Journal of
Economic Literature. 40:2, pp. 351– 401.
Funder, David C. and Jack Block. 1989. “The
Role of Ego-Control, Ego-Resiliency, and IQ in
Delay of Gratification in Adolescence.” Journal of
Personality and Social Psychology. 57:6, pp. 1041–
Halpern, Diane F. 1986. Sex Differences in Cog-
nitive Abilities. Hillsdale, N.J.: Erlbaum.
Hedges, Larry V. and Amy Nowell. 1995. “Sex
Differences in Mental Test Scores, Variability,
and Numbers of High-Scoring Individuals.” Sci-
ence. July 7, 269, pp. 41– 45.
Hilton, Denis J. 1995. “The Social Context of
Reasoning: Conversational Inference and Ratio-
nal Judgment.” Psychological Bulletin. September,
118, pp. 248 –71.
Hyde, Janet Shibley, Elizabeth Fennema and
Susan J. Lamon. 1990. “Gender Differences in
Mathematics Performance: A Meta-Analysis.”
Psychological Bulletin. 107:2, pp. 139 –55.
Jensen, Arthur R. 1998. The g Factor: The Science
of Mental Ability. Westport, Conn.: Praeger.
Kahneman, Daniel and Shane Frederick. 2002.
“Representativeness Revisited: Attribute Substi-
tution in Intuitive Judgment,” in Heuristics and
Biases: The Psychology of Intuitive Judgment.T.
Gilovich, D. Griffin and D. Kahneman, eds. New
York: Cambridge University Press, pp. 49 81.
Kahneman, Daniel and Amos Tversky. 1979.
“Prospect Theory: An Analysis of Decision Un-
der Risk.” Econometrica. 47:2, pp. 263–91.
Kirby, Kris N., Gordon C. Winston and Mari-
ana Sentiesteban. 2005. “Impatience and
Grades: Delay-Discount Rates Correlate Nega-
tively with College GPA.” Learning and Individual
Differences. Forthcoming.
Lubinski, David and Lloyd Humphreys. 1997.
“Incorporating General Intelligence into Epide-
miology and the Social Sciences.” Intelligence.
24:1, pp. 159 –201.
Melikian, Levon. 1959. “Preference for De-
layed Reinforcement: An Experimental Study
among Palestinian Arab Refugee Children.” Jour-
nal of Social Psychology. 50, pp. 81–86.
Mischel, Walter. 1974. “Processes in Delay of
Gratification,” in Advances in Experimental Social
Psychology. L. Berkowitz, ed. San Diego, Calif.:
Academic Press, pp. 249–92.
Monterosso, John, Ronald Ehrman, Kimberly
L. Napier, Charles P. O’Brien and Anna Rose
Childress. 2001. “Three Decision-Making Tasks
in Cocaine-Dependent Patients: Do They Mea-
sure the Same Construct?” Addiction. 96:12,
pp. 1825– 837.
Nagin, Daniel S. and Greg Pogarsky. 2003.
“An Experimental Investigation of Deterrence:
Cheating, Self-Serving Bias, and Impulsivity.”
Criminology. 41:1, pp. 501–27.
Parker, Andrew M. and Baruch Fischhoff.
2005. “Decision-Making Competence: External
Validation through an Individual-Differences
Approach.” Journal of Behavioral Decision Making.
18:1, pp. 1–27.
Rabin, Matthew. 2000. “Risk Aversion and
Expected-Utility Theory: A Calibration Theo-
rem.” Econometrica. 68:5, pp. 1281–292.
Rae, John. 1834. The New Principles of Political
Economy. Reprinted in 1905 as The Sociological
Theory of Capital. New York: Macmillan.
Savage, Leonard J. 1954. The Foundations of
Statistics. New York: Wiley.
Shoda, Yuichi, Walter Mischel and Philip K.
Peake. 1990. “Predicting Adolescent Cognitive
and Self-Regulatory Competencies from Pre-
school Delay of Gratification: Identifying Diag-
nostic Conditions.” Developmental Psychology. 26:6,
pp. 978 86.
Sloman, Steven A. 1996. “The Empirical Case
for Two Systems of Reasoning.” Psychological Bul-
letin. 119:1, pp. 3–22.
Slovic, Paul and Amos Tversky. 1974. “Who
Accepts Savage’s Axiom?” Behavioral Science. 19:4,
pp. 368 –73.
Stanovich, Keith E. and Richard F. West. 2000.
“Individual Differences in Reasoning: Implica-
tions for the Rationality Debate?” Behavioral and
Brain Sciences. 22:5, pp. 645–726.
Sternberg, Robert J. 2000. “The Ability is
not General, and Neither are the Conclu-
sions. [Response to K. E. Stanovich and R.F.
West.]” Behavioral and Brain Sciences. 23:5,
pp. 697–98.
42 Journal of Economic Perspectives
... This item is not included is not included in the results section. 15 Rational-Experiential Inventory (REI; Pacini & Epstein,1999); Cognitive Reflections Test (CRT; Frederick, 2005); Actively Open-Minded Thinking (AOT; Stanovich & West, 1997); Adult ADHD self-report scale (ASRS; Kessler, Adler, Ames, et al., 2005); Attention Related Cognitive Errors Scale (ARCES; Carriere, Cheyne, & Smilek, 2008); Barrat impulsibity Scale (BIS-11;Patton, Stanford, Barratt, 1995); The Barratt Impulsivity/Behavioural Activation Scale (BIS/BAS; Carver & White, 1994). . gamblers (HRGs). ...
... and 3.2.2). We included the subjective arousal, emotional 16 Rational-Experiential Inventory (REI; Pacini & Epstein,1999); Cognitive Reflections Test (CRT; Frederick, 2005); Actively Open-Minded Thinking (AOT; Stanovich & West, 1997); Adult ADHD self-report scale (ASRS; Kessler, Adler, Ames, et al., 2005); Attention Related Cognitive Errors Scale (ARCES; Carriere, Cheyne, & Smilek, 2008) . valence, desire to gamble, and urge items as in Chapter 3. Our only a priori hypotheses regarding these items, was that we would replicate our previous findings that mood, desire, and urge are generally lower once participants stop persisting; whereas, arousal levels are generally maintained. ...
... Cognitive Reflections Test (CRT);Frederick (2005) 4 Rational-Experiential Inventory (REI);Pacini & Epstein (1999) 5 Actively Open-Minded Thinking (AOT) Scale;Stanovich & West (1997) ...
Full-text available
... The Cognitive Reflection Test (CRT): the test tasks were developed according to the CRT test discussed in the article by [26]. The test consists of three tasks, which, after reading, automatically select the wrong answer. ...
... Several studies are currently looking at associations between PA and cognitive functions [4,5,8,12,16,[36][37][38] or learning achievements [39][40][41][42]. To determine the effectiveness of intuitive thinking and LT, we selected the CRT [26]. CRT is used widely in the study of cognitive ability (intuitive thinking and LT) [43,44]. ...
Full-text available
The aim of our study was to determine whether EI and LT vs. intuitive thinking (CRT score) are related to participation in professional sports, independent exercise, and exercise at a gym/health center compared with no exercise. We selected 20 of the most popular types of exercise in Lithuania among respondents who exercise independently or at a gym/health center, and we ranked these types of exercise according to the participants’ emotional intelligence and logical thinking. We studied 4545 women and 1824 men aged 18–74 years with a focus on whether emotional intelligence and logical thinking are related to type of exercise. Participation in any exercise was significantly related to emotional intelligence in men and women. Women in professional sports solved the lowest number of logic tasks. Women who exercise independently or at a gym/health center had better logical thinking than those who do not exercise. Among men, logical thinking was not associated with the type of exercise. We found the tendency for a negative correlation between EI and LT in the 20 most popular types of exercise. Emotional intelligence correlated positively with participation in MVPA. The highest emotional intelligence was in women who participate in dance or Pilates and in men who participate in martial arts, wrestling, boxing, or yoga. Logical thinking was the highest in men who participate in triathlon and in women who perform CrossFit. Men who practice martial arts or track and field and women who participate in cycling were in the top five for emotional intelligence and logical thinking.
... The study was conducted in three stages -empirical, experimental and ascertaining, and used the methods recommended for quantitative studies (Hancock, Stapleton & Mueller, 2018;Bhatia, 2018). Diagnosis of educational motivation, self-confidence, cognitive and creative skills at the pre-experimental and post-experimental stage was performed using: Rasch's measurement model (Boone, 2016), Byrne, Flood and Griffin (2014) and Matotti (2011) academic confidence measurement techniques in modification of Sachitra and Bandara (2017); methods of diagnostics of cognitive reflection and decision making by Frederick (2005) and a questionnaire to determine the level of thinking creativity of Kumar, Kemmler and Holman (1997). ...
... The following tools were used to collect data in this study: Rasch academic motivation measurement models (Hancock, Stapleton & Mueller, 2018), Byrne and Matotti academic confidence measurement techniques in modification of Sachitra and Bandara (2017); methods of diagnostics of cognitive reflection and decision making by Frederick (2005) and a questionnaire to determine the level of thinking creativity of Kumar, Kemmler and Holman (1997). The Rasch Unidimensional Measurement Model (RUMM-2010) software (Andrich, Sheridan & Luo, 2000) was used to process the results of the diagnostic tests on educational motivation, and SPSS 10.0.5., Statistica v. 5.5 A., MathCAD 2000 Pro were used for the other tests. ...
Full-text available
We are very happy to publish this issue of the International Journal of Learning, Teaching and Educational Research. The International Journal of Learning, Teaching and Educational Research is a peer-reviewed open-access journal committed to publishing high-quality articles in the field of education. Submissions may include full-length articles, case studies and innovative solutions to problems faced by students, educators and directors of educational organisations. To learn more about this journal, please visit the website We are grateful to the editor-in-chief, members of the Editorial Board and the reviewers for accepting only high quality articles in this issue. We seize this opportunity to thank them for their great collaboration. The Editorial Board is composed of renowned people from across the world. Each paper is reviewed by at least two blind reviewers. We will endeavour to ensure the reputation and quality of this journal with this issue.
... This tested the ability of a participant to suppress a prepotent (but incorrect) intuitive response and engage in cognitive reflection to resolve a set of mathematical word problems (seven questions in this study). Participants had to choose between four options (Frederick, 2005;Sirota & Juanchich, 2018): the correct answer (1 point each, giving a "CRT-reflective score"), the incorrect intuitive answer (one point each, giving a "CRT-intuitive score"), as well as two other incorrect answers (Frederick, 2005;Pennycook, Cheyne, Koehler & Fugelsang, 2016;Shenhav, Rand & Greene, 2012;Sirota & Juanchich, 2018). As we sought a measure of the reasoning style that was not influenced by a potential FLe, all participants (including those in the FL group) completed the CRT test in their NL. ...
... This tested the ability of a participant to suppress a prepotent (but incorrect) intuitive response and engage in cognitive reflection to resolve a set of mathematical word problems (seven questions in this study). Participants had to choose between four options (Frederick, 2005;Sirota & Juanchich, 2018): the correct answer (1 point each, giving a "CRT-reflective score"), the incorrect intuitive answer (one point each, giving a "CRT-intuitive score"), as well as two other incorrect answers (Frederick, 2005;Pennycook, Cheyne, Koehler & Fugelsang, 2016;Shenhav, Rand & Greene, 2012;Sirota & Juanchich, 2018). As we sought a measure of the reasoning style that was not influenced by a potential FLe, all participants (including those in the FL group) completed the CRT test in their NL. ...
Full-text available
According to the “reduced emotionality hypothesis”, we are less emotionally driven when reasoning in a foreign language (FL) than in a native language (NL). We examined whether this foreign language effect (FLe) extends to the way we perceive motivational quotes (i.e., encouraging slogans conveying a profound and inspirational message): we expected FL participants to rate motivational quotes as less profound than NL participants. Strikingly, we observed the opposite: FL participants found motivational quotes more profound than NL participants, even after controlling for potential confounders (e.g., IQ, reasoning style). Both FL and NL participants gave similarly low profundity ratings to pseudo-profound bullshit sentences (i.e., meaningless sentences sounding profound), indicating that the message must be meaningful for the FLe to arise. We propose that, like space or time, language could promote psychological distance. This favours a focus on the background of a message to indicate profoundness.
... First, we ask participants "How are you feeling right now?" and the experiment interface provides affective sliders [39] for participants to report their valence and arousal. Second, we ask participants to answer 3 questions from the Cognitive Reflection Test (CRT) designed to measure depth of reflective reasoning [40]. After participants respond to the questions from the Cognitive Reflection Test, we congratulate participants for finishing the experiment and provide a link back to the Prolific website where participants can collect their payment. ...
Full-text available
How does empathy influence creative problem solving? We introduce a computational empathy intervention based on context-specific affective mimicry and perspective taking by a virtual agent appearing in the form of a well-dressed polar bear. In an online experiment with 1,006 participants randomly assigned to an emotion elicitation intervention (with a control elicitation condition and anger elicitation condition) and a computational empathy intervention (with a control virtual agent and an empathic virtual agent), we examine how anger and empathy influence participants' performance in solving a word game based on Wordle. We find participants who are assigned to the anger elicitation condition perform significantly worse on multiple performance metrics than participants assigned to the control condition. However, we find the empathic virtual agent counteracts the drop in performance induced by the anger condition such that participants assigned to both the empathic virtual agent and the anger condition perform no differently than participants in the control elicitation condition and significantly better than participants assigned to the control virtual agent and the anger elicitation condition. While empathy reduces the negative effects of anger, we do not find evidence that the empathic virtual agent influences performance of participants who are assigned to the control elicitation condition. By introducing a framework for computational empathy interventions and conducting a two-by-two factorial design randomized experiment, we provide rigorous, empirical evidence that computational empathy can counteract the negative effects of anger on creative problem solving.
... Participants were administered Frederick's Cognitive Reflection Test [40]. The test measures an individual's ability to think "slow" rather than "fast, " using the terminology of Kahneman [41]. ...
Full-text available
Objective: Vaccination will be instrumental in controlling the COVID-19 pandemic, and vaccination of children will be necessary to achieve herd immunity. Given that children with chronic health conditions may be at increased risk of COVID-19, it is crucial to understand factors influencing parental decisions about whether to have their child vaccinated. The study objectives were to measure parental intent to have their child with asthma vaccinated against COVID-19 and identify the determinants of their vaccination decision. Study design: This study is based on a cross-sectional exploratory observational online survey assessing parents' risk perception in the context of COVID-19. Methods: In this study conducted in August 2020, the primary outcome was parent's answer to the question on their intention to get their child vaccinated if a vaccine against COVID-19 was available. Participants were also asked about their intention to get vaccinated themselves. Independent variables studied included sociodemographic, clinical data (e.g. presence of other chronic diseases), psychological, cognitive and risk perception related to COVID-19. Simultaneous equations models (3SLS) and seemingly unrelated regressions model (SUR) were carried out to identify factors associated with intention to have the child vaccinated and participants' intention to get vaccinated themselves against COVID-19. Results: A total of 305 participants completed the survey. Overall, 19.1% of participants reported being unlikely or very unlikely to vaccinate their child against COVID-19 if a vaccine was available. Similarly, 21.0% were unlikely or very unlikely to get vaccinated themselves. The following factors were significantly associated with parents' decision to have their child vaccinated: parental level of education (p = 0.003), employment status (p < 0.001), sex of the child (p = 0.019), presence of other chronic diseases (p = 0.028), whether or not the child had been vaccinated against influenza in the past (p < 0.001), parental anxiety (p = 0.046), and consultation with a health professional since the beginning of the pandemic (p = 0.009). There was a strong relationship between likelihood of not intending to have one's child vaccinated and personal intent not to get vaccinated. Conclusion: These findings are essential in planning for the communication and dissemination of COVID-19 vaccination information to parents, especially for children with asthma or other chronic medical conditions.
Analytical thinking is a vital part of intellectualism, although their relationship has not been directly examined. Therefore, in a representative Slovak sample (N = 410), we examined a newly developed Intellectualism-Anti-Intellectualism Scale (IAIS) by Marques et al. (2017) and its relationships to two indicators of analytical thinking - cognitive biases and cognitive reflection. Moreover, we focused on the three analytical thinking prerequisites - cognitive ability, numerical mindware, and dispositions to analytical thinking. Our results favor the positive correlation between analytical thinking - i.e., lower bias susceptibility and higher cognitive reflection - and intellectualism. While cognitive ability showed no significant association, subjective measures of analytic thinking and numeracy were the strongest correlates of intellectualism. These results indicated that intellectualism taps mostly (but not only) into the motivation and/or predisposition to think analytically. Finally, education appeared, consistently with previous research, as a significant predictor of intellectualism, which opened up new avenues for further research practical implications.
The FIAT paradigm (Grimmer et al., 2021) is a novel method of eliciting ‘Aha’ moments for incorrect solutions to anagrams in the laboratory, i.e. false insights. There exist many documented reports of psychotic symptoms accompanying strong feelings of ‘Aha!’ (Feyaerts, Henriksen, Vanheule, Myin-Germeys, & Sass, 2021; Mishara, 2010; Tulver, Kaup, Laukkonen, & Aru, 2021), suggesting that the newly developed FIAT could reveal whether people who have more false insights are more prone to psychosis and delusional belief. To test this possibility, we recruited 200 participants to take an adapted version of the FIAT and complete measures of thinking style and psychosis proneness. We found no association between experimentally induced false insights and measures of Schizotypy, Need for Cognition, Jumping to Conclusions, Aberrant Salience, Faith in Intuition, or the Cognitive Reflection Task. We conclude that experiencing false insights might not be constrained to any particular type of person, but rather, may arise for anyone under the right circumstances.
Full-text available
Social rules governing communication require the listener to go beyond the information given in a message, contrary to the assumption that rational people should operate only on the information explicitly given in judgment tasks. An attributional model of conversational inference is presented that shows how hearers’ message interpretations are guided by their perceptions of the speaker. The model is then applied to the analysis of experiments on reasoning processes in cognitive psychology, developmental psychology, social psychology, and decision research. It is shown that the model can predict how experimental manipulations of relevant source and message attributes affect respondents’ judgments. Failure to recognize the role of conversational assumptions in governing inference processes can lead rational responses to be misclassified as errors and their source misattributed to cognitive shortcomings in the decision maker.
Full-text available
The authors conducted a meta-analysis of 150 studies in which the risk-taking tendencies of male and female participants were compared. Studies were coded with respect to type of task (e.g., self-reported behaviors vs. observed behaviors), task content (e.g., smoking vs. sex), and 5 age levels. Results showed that the average effects for 14 out of 16 types of risk taking were significantly larger than 0 (indicating greater risk taking in male participants) and that nearly half of the effects were greater than .20. However, certain topics (e.g., intellectual risk taking and physical skills) produced larger gender differences than others (e.g., smoking). In addition, the authors found that (a) there were significant shifts in the size of the gender gap between successive age levels, and (b) the gender gap seems to be growing smaller over time. The discussion focuses on the meaning of the results for theories of risk taking and the need for additional studies to clarify age trends. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Full-text available
Need for cognition in contemporary literature refers to an individual's tendency to engage in and enjoy effortful cognitive endeavors. Individual differences in need for cognition have been the focus of investigation in over 100 empirical studies. This literature is reviewed, covering the theory and history of this variable, measures of interindividual variations in it, and empirical relationships between it and personality variables, as well as individuals' tendencies to seek and engage in effortful cognitive activity and enjoy cognitively effortful circumstances. The article concludes with discussions of an elaborated theory of the variable, including antecedent conditions; interindividual variations in it related to the manner information is acquired or processed to guide perceptions, judgments, and behavior; and the relationship between it and the 5-factor model of personality structure. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Full-text available
Developed and validated the Need for Cognition Scale (NCS). In Study 1, a pool of items was administered to 96 faculty members (high-need-for-cognition group) and assembly line workers (low-need-for-cognition group). Ambiguity, irrelevance, and internal consistency were used to select items for subsequent studies. Factor analysis yielded one major factor. In Study 2, the NCS and the Group Embedded Figures Test were administered to 419 undergraduates to validate the factor structure and to determine whether the NCS tapped a construct distinct from test anxiety and cognitive style. The factor structure was replicated, and responses to the NCS were weakly related to cognitive style and unrelated to test anxiety. In Study 3, 104 undergraduates completed the NCS, the Marlowe-Crowne Social Desirability Scale, and a dogmatism scale. Results indicate that need for cognition was related weakly and negatively to being closeminded, unrelated to social desirability, and positively correlated with general intelligence. Study 4 (97 undergraduates) furnished evidence of the predictive validity of the NCS. (32 ref) (PsycINFO Database Record (c) 2012 APA, all rights reserved)
The abstract for this document is available on CSA Illumina.To view the Abstract, click the Abstract button above the document title.
Comments on S. Epstein's (see record 1994-45153-001) theory of the integration of the cognitive and the psychodynamic unconscious. A review of the evolution of psychoanalysis renders moot his concerns about the wisdom of a "Freudian" model that attributes the less rational facets of mental activity to a maladaptive and pathological primary process. Whereas his framework for a dual (and dueling) cognition is compelling, one cannot overlook advances in neuroscience that further the premise that the human brain operates with parallel processes of cognition loosely associated with the faculties of each cerebral hemisphere. (PsycINFO Database Record (c) 2012 APA, all rights reserved)
Variations of the self-imposed delay-of-gratification situation in preschool were compared to determine when individual differences in this situation may predict aspects of cognitive and self-regulatory competence and coping in adolescence. Preschool children from a university community participated in experiments that varied features of the self-imposed delay situation. Experimental analyses of the cognitive–attentional processes that affect waiting in this situation helped identify conditions in which delay behavior would be most likely to reflect relevant cognitive and attentional competencies. As hypothesized, in those conditions, coherent patterns of statistically significant correlations were found between seconds of delay time in such conditions in preschool and cognitive and academic competence and ability to cope with frustration and stress in adolescence. (PsycINFO Database Record (c) 2012 APA, all rights reserved)