Altered AIB1 or AIB1 Delta 3 Expression Impacts ER alpha Effects on Mammary Gland Stromal and Epithelial Content

Article (PDF Available)inMolecular Endocrinology 25(4):549-63 · February 2011with10 Reads
DOI: 10.1210/me.2010-0114 · Source: PubMed
Amplified in breast cancer 1 (AIB1) (also known as steroid receptor coactivator-3) is a nuclear receptor coactivator enhancing estrogen receptor (ER)α and progesterone receptor (PR)-dependent transcription in breast cancer. The splice variant AIB1Δ3 demonstrates increased ability to promote ERα and PR-dependent transcription. Both are implicated in breast cancer risk and antihormone resistance. Conditional transgenic mice tested the in vivo impact of AIB1Δ3 overexpression compared with AIB1 on histological features of increased breast cancer risk and growth response to estrogen and progesterone in the mammary gland. Combining expression of either AIB1 or AIB1Δ3 with ERα overexpression, we investigated in vivo cooperativity. AIB1 and AIB1Δ3 overexpression equivalently increased the prevalence of hyperplastic alveolar nodules but not ductal hyperplasia or collagen content. When AIB1 or AIB1Δ3 overexpression was combined with ERα, both stromal collagen content and ductal hyperplasia prevalence were significantly increased and adenocarcinomas appeared. Overexpression of AIB1Δ3, especially combined with overexpressed ERα, led to an abnormal response to estrogen and progesterone with significant increases in stromal collagen content and development of a multilayered mammary epithelium. AIB1Δ3 overexpression was associated with a significant increase in PR expression and PR downstream signaling genes. AIB1 overexpression produced less marked growth abnormalities and no significant change in PR expression. In summary, AIB1Δ3 overexpression was more potent than AIB1 overexpression in increasing stromal collagen content, inducing abnormal mammary epithelial growth, altering PR expression levels, and mediating the response to estrogen and progesterone. Combining ERα overexpression with either AIB1 or AIB1Δ3 overexpression augmented abnormal growth responses in both epithelial and stromal compartments.
    • "Given the aforementioned, there are surprisingly few mouse models that have been engineered to overexpress a SRC. To date, these models have been designed to target the overexpression of just one SRC member (SRC-3 (NCOA-3; AIB-1) or its variant) to one target tissue: the mammary gland, using the mouse mammary tumor virus (MMTV) promoter [22]–[25]. "
    [Show abstract] [Hide abstract] ABSTRACT: As pleiotropic coregulators, members of the p160/steroid receptor coactivator (SRC) family control a broad spectrum of transcriptional responses that underpin a diverse array of physiological and pathophysiological processes. Because of their potent coregulator properties, strict controls on SRC expression levels are required to maintain normal tissue functionality. Accordingly, an unwarranted increase in the cellular levels of SRC members has been causally linked to the initiation and/or progression of a number of clinical disorders. Although knockout mouse models have underscored the critical non-redundant roles for each SRC member in vivo, there are surprisingly few mouse models that have been engineered to overexpress SRCs. This deficiency is significant since SRC involvement in many of these disorders is based on unscheduled increases in the levels (rather than the absence) of SRC expression. To address this deficiency, we used recent mouse technology that allows for the targeted expression of human SRC-2 in cells which express the progesterone receptor. Through cre-loxP recombination driven by the endogenous progesterone receptor promoter, a marked elevation in expression levels of human SRC-2 was achieved in endometrial cells that are positive for the progesterone receptor. As a result of this increase in coregulator expression, female mice are severely subfertile due to a dysfunctional uterus, which exhibits a hypersensitivity to estrogen exposure. Our findings strongly support the proposal from clinical observations that increased levels of SRC-2 are causal for a number of endometrial disorders which compromise fertility. Future studies will use this mouse model to decipher the molecular mechanisms that underpin the endometrial defect. We believe such mechanistic insight may provide new molecular descriptors for diagnosis, prognosis, and/or therapy in the clinical management of female infertility.
    Full-text · Article · Jun 2014
    • "In tissues with a predominance of ER, the interaction of AIB1 with ER and its expression may be helpful to regulate estrogenmediated gene functions or high tumor grade (Paramanik and Thakur, 2011; Kefalopoulou et al., 2012 ). However, in prolactinomas , ER is predominant (Shupnik et al., 1998), and, in tissues in which ER is predominant, it has been involved in the protection of degradation of AIB1 by atypical protein kinase C-mediated phosphorylation (Garabedian and Logan, 2008), and overexpression of AIB1 and ER augmented abnormal growth responses (Nakles et al., 2011). In our study all prolactinomas were ER-positive tumors in concordance with descriptions of other authors (Shupnik et al., 1998). "
    [Show abstract] [Hide abstract] ABSTRACT: Estrogens as well as certain growth factors strongly influence the development and growth of prolactinomas. However, the molecular mechanisms by which extracellular factors trigger prolactinomas are not well known. Amplified in breast cancer 1 (AIB1), also known as steroid receptor co-activator 3 (SRC-3), belongs to the p160/SRC family of nuclear receptor co-activators and is a major co-activator of the estrogen receptor. Here, we report that the estrogen receptor coactivator AIB1 is overexpressed in human prolactinomas and correlates with the detection of aromatase and estrogen receptor α (ERα). Of the 87 pituitary tumors evaluated in women, 56%, corresponding to hyperoprolactinemic women, contained an enriched population of prolactin-positive cells and hence were further classified as prolactinomas. All prolactinomas stained positive for both ERα and AIB1. Moreover, AIB1 sub-cellular distribution was indicative of the cell-cycle status of tumors; the nuclear expression of AIB1 was correlated with proliferative markers whereas the cytoplasmic localization of AIB1 coincided with active caspase-3. Thus, our results demonstrate for the first time that AIB1 is expressed in prolactinomas and suggest its participation in the regulation of proliferation and apoptosis of tumoral cells. Because aromatase expression is also enhanced in these prolactinomas and it is involved in the local production of estradiol, both mechanisms, ER-AIB1 and aromatase could be related.
    Full-text · Article · Feb 2013
  • [Show abstract] [Hide abstract] ABSTRACT: The oncogene amplified in breast cancer 1 (AIB1) is a nuclear receptor coactivator that plays a major role in the progression of various cancers. We previously identified a splice variant of AIB1 called AIB1-Δ4 that is overexpressed in breast cancer. Using mass spectrometry, we define the translation initiation of AIB1-Δ4 at Met(224) of the full-length AIB1 sequence and have raised an antibody to a peptide representing the acetylated N terminus. We show that AIB1-Δ4 is predominantly localized in the cytoplasm, although leptomycin B nuclear export inhibition demonstrates that AIB1-Δ4 can enter and traffic through the nucleus. Our data indicate an import mechanism enhanced by other coactivators such as p300/CBP. We report that the endogenously and exogenously expressed AIB1-Δ4 is recruited as efficiently as full-length AIB1 to estrogen-response elements of genes, and it enhances estrogen-dependent transcription more effectively than AIB1. Expression of an N-terminal AIB1 protein fragment, which is lost in the AIB1-Δ4 isoform, potentiates AIB1 as a coactivator. This suggests a model whereby the transcriptional activity of AIB1 is squelched by a repressive mechanism utilizing the N-terminal domain and that the increased coactivator function of AIB1-Δ4 is due to the loss of this inhibitory domain. Finally, we show, using Scorpion primer technology, that AIB1-Δ4 expression is correlated with metastatic capability of human cancer cell lines.
    Full-text · Article · Jun 2011
Show more