Article

Comparative analysis and mutation effects of fpp2-fpp1 tandem genes encoding proteolytic extracellular enzymes of Flavobacterium psychrophilum

Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Spain.
Microbiology (Impact Factor: 2.56). 02/2011; 157(Pt 4):1196-204. DOI: 10.1099/mic.0.046938-0
Source: PubMed

ABSTRACT

Flavobacterium psychrophilum is a very significant fish pathogen that secretes two biochemically characterized extracellular proteolytic enzymes, Fpp1 and Fpp2. The genes encoding these enzymes are organized as an fpp2-fpp1 tandem in the genome of strain F. psychrophilum THC02/90. Analysis of the corresponding encoded proteins showed that they belong to two different protease families. For gene function analysis, new genetic tools were developed in F. psychrophilum by constructing stable isogenic fpp1 and fpp2 mutants via single-crossover homologous recombination. RT-PCR analysis of wild-type and mutant strains suggested that both genes are transcribed as a single mRNA from the promoter located upstream of the fpp2 gene. Phenotypic characterization of the fpp2 mutant showed lack of caseinolytic activity and higher colony spreading compared with the wild-type strain. Both characteristics were recovered in the complemented strain. One objective of this work was to assess the contribution to virulence of these proteolytic enzymes. LD(50) experiments using the wild-type strain and mutants showed no significant differences in virulence in a rainbow trout challenge model, suggesting instead a possible nutritional role. The gene disruption procedure developed in this work, together with the knowledge of the complete genome sequence of F. psychrophilum, open new perspectives for the study of gene function in this bacterium.

Download full-text

Full-text

Available from: David Pérez-Pascual, Jun 09, 2014
  • Source
    • "Therefore, it is clear that expression of virulence genes at TBO is a key element in the infection process. The first indication of this came from the studies related to the extracellular metalloproteases Fpp1 and Fpp2 (Secades et al., 2001; Pérez-Pascual et al., 2011; Gómez et al., 2012). Extracellular proteolytic activity was linked by different authors to the virulence of this bacterium due to its potential role in the degradation of host tissues (Bertolini et al., 1994; Ostland et al., 2000). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Virulence gene expression in pathogenic bacteria is modulated by environmental parameters. A key factor in this expression is temperature. Its effect on virulence gene expression in bacteria infecting warm-blooded hosts is well documented. Transcription of virulence genes in these bacteria is induced upon a shift from low environmental to a higher host temperature (37°C). Interestingly, host temperatures usually correspond to the optimum for growth of these pathogenic bacteria. On the contrary, in ectothermic hosts such as fish, molluscs, and amphibians, infection processes generally occur at a temperature lower than that for the optimal growth of the bacteria. Therefore, regulation of virulence gene expression in response to temperature shift has to be modulated in a different way to that which is found in bacteria infecting warm-blooded hosts. The current understanding of virulence gene expression and its regulation in response to temperature in fish-pathogenic bacteria is limited, but constant extension of our knowledge base is essential to enable a rational approach to the problem of the bacterial fish diseases affecting the aquaculture industry. This is an interesting issue and progress needs to be made in order to diminish the economic losses caused by these diseases. The intention of this review is, for the first time, to compile the scattered results existing in the field in order to lay the groundwork for future research. This article is an overview of those relevant virulence genes that are expressed at temperatures lower than that for optimal bacterial growth in different fish-pathogenic bacteria as well as the principal mechanisms that could be involved in their regulation.
    Full-text · Article · Jul 2015 · Frontiers in Microbiology
  • Source
    • "Both steps of this markerless deletion system had similar conjugation frequencies than that observed in other previous single-crossover recombination experiments (fpp1 and fpp2,[12]), but having the advantage of reducing or even avoiding the possibility to obtain polar effects. As it occurs with site-directed and transposon mutagenesis systems, conjugation and recombination frequencies are the principal bottleneck to succeed in all these proce- dures[12,13]. Moreover, it should be pointed out that, in this bacterium, it is usual to find transconjugants lacking antibiotic resistance determinants. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Flavobacterium psychrophilum is a Gram-negative fish pathogen that causes important economic losses in aquaculture worldwide. Although the genome of this bacterium has been determined, the function and relative importance of genes in relation to virulence remain to be established. To investigate their respective contribution to the bacterial pathogenesis, effective tools for gene inactivation are required. In the present study, a markerless gene deletion system has been successfully developed for the first time in this bacterium. Using this method, the F. psychrophilum fcpB gene, encoding a predicted cysteine protease homologous to Streptococcus pyogenes streptopain, was deleted. The developed system involved the construction of a conjugative plasmid that harbors the flanking sequences of the fcpB gene and an I-SceI meganuclease restriction site. Once this plasmid was integrated in the genome by homologous recombination, the merodiploid was resolved by the introduction of a plasmid expressing I-SceI under the control of the fpp2 F. psychrophilum inducible promoter. The resulting deleted fcpB mutant presented a decrease in extracellular proteolytic activity compared to the parental strain. However, there were not significant differences between their LD50 in an intramuscularly challenged rainbow trout infection model. The mutagenesis approach developed in this work represents an improvement over the gene inactivation tools existing hitherto for this “fastidious” bacterium. Unlike transposon mutagenesis and gene disruption, gene markerless deletion has less potential for polar effects and allows the mutation of virtually any non-essential gene or gene clusters.
    Full-text · Article · Feb 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of the fish pathogen Flavobacterium psychrophilum has been drastically hampered by the difficulty to perform genetic manipulation of this organism. Although recent publications described the successful transfer of genetic material into this bacterium by transformation and conjugation, additional tools are still needed. This paper reports the construction of vector pCP23-G, which permits for the first time to monitor transcriptional regulation in this pathogen by using a promoterless gfpmut3 gene as a reporter. Additionally, use of pCP23-G enabled the trancriptional analysis of three putative promoter regions of F. psychrophilum, corresponding to genes fpp2-fpp1, pdhB and gldJ, under different growth conditions. Overall, the construction of pCP23-G facilitates genetic analysis in F. psychrophilum, by enabling the determination of gene expression both in vitro and in vivo. Furthermore, this would also open the possibility for studies on the location of this bacterium in the fish tissues.
    No preview · Article · Feb 2012 · Gene
Show more