Preservation of femoral bone thickness in middle age predicts survival in genetically heterogeneous mice

Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, USA.
Aging cell (Impact Factor: 6.34). 06/2011; 10(3):383-91. DOI: 10.1111/j.1474-9726.2011.00671.x
Source: PubMed


To see whether age-related changes in bone could predict subsequent lifespan, we measured multiple aspects of femur size and shape at 4, 15, and 24 months of age in genetically heterogeneous mice. Mice whose cortical bone became thicker from 4 to 15 months, associated with preservation of the endosteal perimeter, survived longer than mice whose endosteal cavity expanded, at the expense of cortical bone, over this age range. Femur size at age 4 months was also associated with a difference in life expectancy: mice with larger bones (measured by length, cortical thickness, or periosteal perimeter) had shorter lifespans. Femur length, midlife change in cortical bone thickness, and midlife values of CD8 T memory cells each added significant power for longevity prediction. Mice in the upper half of the population for each of these three endpoints lived, on average, 103 days (12%) longer than mice with the opposite characteristics. Thus, measures of young adult bone dimensions, changes as a result of bone remodeling in middle age, and immunological maturation provide partially independent indices of aging processes that together help to determine lifespan in genetically heterogeneous mice.

Download full-text


Available from: Andrzej Galecki
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice are increasingly used for investigation of the pathophysiology of osteoporosis because their genome is easily manipulated, and their skeleton is similar to that of humans. Unlike the human skeleton, however, the murine skeleton continues to grow slowly after puberty and lacks osteonal remodeling of cortical bone. Yet, like humans, mice exhibit loss of cancellous bone, thinning of cortical bone, and increased cortical porosity with advancing age. Histologic evidence in mice and humans alike indicates that inadequate osteoblast-mediated refilling of resorption cavities created during bone remodeling is responsible. Mouse models of progeria also show bone loss and skeletal defects associated with senescence of early osteoblast progenitors. Additionally, mouse models of atherosclerosis, which often occurs in osteoporotic participants, also suffer bone loss, suggesting that common diseases of aging share pathophysiological pathways. Knowledge of the causes of skeletal fragility in mice should therefore be applicable to humans if inherent limitations are recognized.
    Full-text · Article · May 2013 · The Journals of Gerontology Series A Biological Sciences and Medical Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite a wealth of clinical data showing an association between inflammation and degenerative disorders in the elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism by which the Nlrp3 inflammasome controls systemic low-grade age-related "sterile" inflammation in both periphery and brain independently of the noncanonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome, and astrogliosis. Consistent with the hypothesis that systemic low-grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome-mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome-dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer an innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases.
    No preview · Article · Oct 2013 · Cell metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aging is the greatest risk factor for the development of chronic diseases such as arthritis, type 2 diabetes, cardiovascular disease, kidney disease, Alzheimer's disease, macular degeneration, frailty, and certain forms of cancers. It is widely regarded that chronic inflammation may be a common link in all these age-related diseases. This raises the question, can one alter the course of aging and potentially slow the development of all chronic diseases by manipulating the mechanisms that cause age-related inflammation? Emerging evidence suggests that pro-inflammatory cytokines interleukin-1 (IL-1) and IL-18 show an age-dependent regulation implicating inflammasome-mediated caspase-1 activation in the aging process. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome controls the caspase-1 activation in myeloid-lineage cells in several organs during aging. The NLRP3 inflammasome is especially relevant to aging as it can get activated in response to structurally diverse damage-associated molecular patterns (DAMPs) such as extracellular ATP, excess glucose, ceramides, amyloids, urate, and cholesterol crystals, all of which increase with age. Interestingly, reduction in NLRP3-mediated inflammation prevents age-related insulin resistance, bone loss, cognitive decline, and frailty. NLRP3 is a major driver of age-related inflammation and therefore dietary or pharmacological approaches to lower aberrant inflammasome activation holds promise in reducing multiple chronic diseases of age and may enhance healthspan. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    No preview · Article · May 2015 · Immunological Reviews