Decreased Oocyte DAZL Expression in Mice Results in Increased Litter Size by Modulating Follicle-Stimulating Hormone-Induced Follicular Growth

Medical Research Council Human Reproductive Sciences Unit, Queen's Medical Research Institute, Edinburgh, United Kingdom.
Biology of Reproduction (Impact Factor: 3.32). 08/2011; 85(3):584-93. DOI: 10.1095/biolreprod.110.086264
Source: PubMed


While the germ cell-specific RNA binding protein, DAZL, is essential for oocytes to survive meiotic arrest, DAZL heterozygous (het) mice have an increased ovulation rate that is associated with elevated inhibin B and decreased plasma follicle-stimulating hormone (FSH). The relationship between decreased oocyte DAZL expression and enhanced follicular development in het mice was investigated using in vitro follicle cultures and in vivo modulation of endogenous FSH, by treating mice with inhibin and exogenous FSH. In vitro, follicles from het mice are more sensitive to FSH than those of wild-type (wt) mice and can grow in FSH concentrations that are deleterious to wild-type follicles. In vivo, despite no differences between genotypes in follicle population profiles, analysis of granulosa cell areas in antral follicles identified a significantly greater number of antral follicles with increased granulosa cell area in het ovaries. Modulation of FSH in vivo, using decreasing doses of FSH or ovine follicular fluid as a source of inhibin, confirmed the increased responsiveness of het antral follicles to FSH. Significantly more follicles expressing aromatase protein confirmed the earlier maturation of granulosa cells in het mice. In conclusion, it is suggested that DAZL expression represses specific unknown genes that regulate the response of granulosa cells to FSH. If this repression is reduced, as in DAZL het mice, then follicles can grow to the late follicular stage despite declining levels of circulating FSH, thus leading to more follicles ovulating and increased litter size.

Download full-text


Available from: Alison Murray, Dec 17, 2015
  • Source
    • "In classic PCOS, the hyperandrogenism and elevated GnRH generally results in an increase in the LH/FSH ratio [44]. In our mice, the elevated FSH may have been responsible for the increased number of recruited, but unovulated follicles as FSH is known to stimulate follicle development [45,46] and protect against follicle atresia [47,48]. FSH is a potent activator of the PI3K/akt signaling pathway [49] and the elevated circulating FSH seen in the CD36 null mice may have contributed to the increased akt phosphorylation observed in the ovaries from these mice. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian angiogenesis is a complex process that is regulated by a balance between pro- and anti-angiogenic factors. Physiological processes within the ovary, such as folliculogenesis, ovulation, and luteal formation are dependent upon adequate vascularization and anything that disrupts normal angiogenic processes may result in ovarian dysfunction, and possibly infertility. The objective of this study was to evaluate the role of the thrombospondin-1 (TSP-1) receptor CD36 in mediating ovarian angiogenesis and regulating ovarian function. The role of CD36 was evaluated in granulosa cells in vitro and ovarian morphology and protein expression were determined in wild type and CD36 null mice. In vitro, CD36 inhibition increased granulosa cell proliferation and decreased apoptosis. Granulosa cells in which CD36 was knocked down also exhibited an increase in expression of survival and angiogenic proteins. Ovaries from CD36 null mice were hypervascularized, with increased expression of pro-angiogenic vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Ovaries from CD36 null mice contained an increase in the numbers of pre-ovulatory follicles and decreased numbers of corpora lutea. CD36 null mice also had fewer number of offspring compared to wild type controls. The results from this study demonstrate that CD36 is integral to the regulation of ovarian angiogenesis by TSP-1 and the expression of these family members may be useful in the control of ovarian vascular disorders.
    Full-text · Article · Mar 2014 · Reproductive Biology and Endocrinology
  • Source
    • "Every tenth section of each ovary was H&E stained and examined at ×20 and ×40 magnification under a light microscope. Follicles were counted and classified according to a previously published method, allowing for a realistic estimate of follicle proportions with minimal data manipulation (Hirshfield & Midgley 1978, McNeilly et al. 2011). Only follicles containing a visible oocyte nucleus were included in the count, and these were classified based on their GC morphology. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effects of different windows of testosterone propionate (TP) treatment during foetal and neonatal life in female rats to determine whether and when excess androgen exposure would cause disruption of adult reproductive function. Animals were killed prepubertally at d25 and as adults at d90. Plasma samples were taken for hormone analysis and ovaries serial sectioned for morphometric analyses. In prepubertal animals, only foetal+postnatal and late postnatal TP resulted in increased body weights, and an increase in transitory, but reduced antral follicle numbers without affecting total follicle populations. Treatment with TP during both foetal+postnatal life resulted in the development of streak ovaries with activated follicles containing oocytes that only progressed to a small antral (smA) stage and inactive uteri. TP exposure during foetal or late postnatal life had no effect upon adult reproductive function or the total follicle population, although there was a reduction in the primordial follicle pool. In contrast, TP treatment during full postnatal life (d1-25) resulted in anovulation in adults (d90). These animals were heavier, had a greater ovarian stromal compartment, no differences in follicle thecal cell area, but reduced numbers of anti-Mullerian hormone-positive smA follicles when compared with controls. Significantly reduced uterine weights lead reduced follicle oestradiol production. These results support the concept that androgen programming of adult female reproductive function occurs only during specific time windows in foetal and neonatal life with implications for the development of polycystic ovary syndrome in women.
    Full-text · Article · Jan 2012 · Reproduction
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dazl (deleted in azoospermia-like) is a conserved gene in mammalian meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Up to date, the expression and function of Dazl in the goat testis are unknown. The objectives of this study were to investigate the expression pattern of Dazl in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Dazl in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. The dairy goat Dazl is highly conserved analysed by several online and bioinformatics software, respectively. Over-expression of Dazl promoted the expression of meiosis-related genes in dairy goat mGSCs. The expression of Stra8 was up-regulated by over-expression of Dazl analysed by Luciferase reporter assay. Taken together, results suggest the Dazl plays an important role in dairy goat spermatogenesis and that over-expression of Dazl may promote Stra8 expression in dairy goat mGSCs.
    No preview · Article · Jan 2014 · Molecular Biology Reports
Show more