Article

Three Weeks on a High-Fat Diet Increases Intrahepatic Lipid Accumulation and Decreases Metabolic Flexibility in Healthy Overweight Men

Department of Human Biology, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands.
The Journal of Clinical Endocrinology and Metabolism (Impact Factor: 6.21). 04/2011; 96(4):E691-5. DOI: 10.1210/jc.2010-2243
Source: PubMed

ABSTRACT

In rodents, high-fat diets increase intrahepatic lipid (IHL), but human studies are scarce.
Our objective was to examine whether high-fat diets influence IHL, intramyocellular lipids (IMCL), and insulin resistance.
Twenty overweight men were randomly allocated to low- or high-fat groups (age, 54.0 ± 2.3 and 56.4 ± 2.5 yr; body mass index, 29.3 ± 0.6 and 28.3 ± 0.5 kg/m(2), respectively). Both groups started with a 3-wk low-fat diet [15% energy (En%) as protein, 65 En% as carbohydrates, 20 En% as fat], after which half of the subjects switched to a 3-wk isocaloric high-fat diet (15 En% protein, 30 En% carbohydrates, 55 En% fat). After 3 and 6 wk, IHL and IMCL content were assessed by (1)H magnetic resonance spectroscopy and a muscle biopsy, and insulin sensitivity was studied using a hyperinsulinemic-euglycemic clamp. An additional liver scan was performed after 1 wk in the high-fat group.
IHL decreased by 13% in the low-fat group and increased by 17% in high-fat group (P = 0.047). IMCL content was unaffected (P = 0.304). Insulin sensitivity was unaffected. At wk 3, IHL correlated negatively with insulin sensitivity (r = -0.584; P = 0.009, all subjects combined). Metabolic flexibility, defined as change in respiratory quotient upon insulin stimulation, was decreased after 3 wk of the high-fat diet (change in respiratory quotient was +0.02 ± 0.02 vs. -0.05 ± 0.1 in low-fat vs. high-fat group, P = 0.009). Basal plasma glucose increased after the high-fat diet (P = 0.038). Plasma parameters insulin, free fatty acids, high-sensitivity C-reactive protein, and liver enzymes and body weight were unaffected by diet.
A 3-wk high-fat diet leads to IHL accumulation and a decreased metabolic flexibility, but insulin sensitivity is unaffected.

1 Follower
 · 
7 Reads
  • Source
    • "The data in the present study is gathered from clamp studies previously performed in our research center [13], [14], [15], [16], [17]. The sample is compromised of volunteers (both diabetic and obese) who have participated in training, pharmacological or nutritional intervention studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial dysfunction, lipid accumulation, insulin resistance and metabolic inflexibility have been implicated in the etiology of type 2 diabetes (T2D), yet their interrelationship remains speculative. We investigated these interrelationships in a group of T2D and obese normoglycemic control subjects. 49 non-insulin dependent male T2D patients and 54 male control subjects were enrolled, and a hyperinsulinemic-euglycemic clamp and indirect calorimetry were performed. A muscle biopsy was taken and intramyocellular lipid (IMCL) was measured. In vivo mitochondrial function was measured by PCr recovery in 30 T2D patients and 31 control subjects. Fasting NEFA levels were significantly elevated in T2D patients compared with controls, but IMCL was not different. Mitochondrial function in T2D patients was compromised by 12.5% (p<0.01). Whole body glucose disposal (WGD) was higher at baseline and lower after insulin stimulation. Metabolic flexibility (ΔRER) was lower in the type 2 diabetic patients (0.050±0.033 vs. 0.093±0.050, p<0.01). Mitochondrial function was the sole predictor of basal respiratory exchange ratio (RER) (R(2) = 0.18, p<0.05); whereas WGD predicted both insulin-stimulated RER (R(2) = 0.29, p<0.001) and metabolic flexibility (R(2) = 0.40, p<0.001). These results indicate that defects in skeletal muscle in vivo mitochondrial function in type 2 diabetic patients are only reflected in basal substrate oxidation and highlight the importance of glucose disposal rate as a determinant of substrate utilization in response to insulin.
    Full-text · Article · Feb 2013 · PLoS ONE
  • Source
    • "Les études d'observation montrent que la prévalence de stéatose hépatique est plus élevée chez les consommateurs excessifs de boissons sucrées [4], d'alcool [5] et de fructose [6], ce dernier composé étant connu comme hautement lipogénique ou stéatogène. Par ailleurs, une étude d'intervention récente a montré une augmentation de l'accumulation de lipides intrahépatique suite à un régime de trois semaines riche en matières grasses [7]. Ainsi, il n'est pas surprenant que la restriction calorique soit un moyen efficace de réduire la stéatose hépatique [8] [9]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Les lipotropes limitent les excès de triglycérides hépatiques. Pourtant, alors que la stéatose hépatique touche plusieurs millions de personnes dans le monde, le potentiel lipotropique des aliments n'a jamais été étudié. L'objectif de ce travail a été de caractériser et quantifier le potentiel lipotropique des produits alimentaires d'origine végétale (AOV) à partir des données de teneurs en lipotropes de la littérature scientifique et des tables de compositions alimentaires. Ainsi, 132 produits végétaux et huit lipotropes (bétaïne, choline, myo-inositol, méthionine, niacine, acide pantothénique, folates et magnésium) ont été sélectionnés. Les principaux résultats montrent que les légumes sont la meilleure source de lipotropes sur la base de 100 kcal et que les produits végétaux sont une source plus diversifiée - mais complémentaire - de lipotropes que les produits animaux. Le potentiel lipotropique a ensuite été défini sous la forme d'un nouvel index, la capacité lipotropique (CL) qui intègre la somme des densités des huit lipotropes par rapport à un aliment de référence. Les procédés technologiques diminuent le potentiel lipotropique des produits végétaux d'environ 20 % : tandis que le raffinage est le traitement le plus drastique, les fermentations n'ont que peu d'effet voire tendent à augmenter la densité en lipotropes. Puis nous avons évalué que notre consommation en bétaïne, choline et myo-inositol peut être augmentée. Sur la base d'un euro, les produits de type grains et graines (légumineuses, céréales et graines oléagineuses) sont le meilleur compromis entre une CL élevée et un apport bon marché en lipotropes. Cependant il reste indispensable de réaliser des études chez l'homme afin de relier CL et prévalence de stéatose hépatique.
    Full-text · Article · Dec 2012 · Cahiers de Nutrition et de Diététique
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Concomitant with the obesity epidemic, a fatty liver due to nonalcoholic causes has become the most common liver disorder. Nonalcoholic fatty liver disease (NAFLD) covers a range from benign steatosis to nonalcoholic steatohepatitis (NASH), which in turn may progress to cirrhosis. NAFLD predicts, independent of obesity, the metabolic syndrome and type 2 diabetes and can progress to cirrhosis. This review focuses on studies in humans addressing effects of dietary changes in NAFLD. Cross-sectionally, increased intake of fructose and simple sugars characterizes patients with NAFLD compared with weight-matched controls. Increased fructose intake is also associated with hepatic insulin resistance and fibrosis severity in NASH. Intake of saturated fat may also be increased in NAFLD. Dietary intervention studies have shown that liver volume and fat content changes significantly within a few days in response to caloric restriction or excess despite no or small changes in body weight. Weight loss by bariatric surgery decreases liver fat and inflammation but effects on fibrosis are uncertain. Hepatic insulin sensitivity generally changes in parallel with changes in liver fat content in NAFLD. Human data are limited regarding effects of isocaloric changes in diet composition on liver fat content. Maintenance of normal body weight and avoidance of intake of excess lipogenic simple sugars would seem beneficial for prevention of NAFLD and its metabolic consequences.
    Preview · Article · Nov 2010
Show more