Article

Binding of Efb from Staphylococcus aureus to Fibrinogen Blocks Neutrophil Adherence

Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, Texas 77030, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 03/2011; 286(11):9865-74. DOI: 10.1074/jbc.M110.199687
Source: PubMed

ABSTRACT

In addition to its pivotal role in hemostasis, fibrinogen (Fg) and provisional fibrin matrices play important roles in inflammation and regulate innate immune responses by interacting with leukocytes. Efb (the extracellular fibrinogen-binding protein) is a secreted Staphylococcus aureus protein that engages host Fg and complement C3. However, the molecular details underlying the Efb-Fg interaction and the biological relevance of this interaction have not been determined. In the present study, we characterize the interaction of Efb with Fg. We demonstrate that the Fg binding activity is located within the intrinsically disordered N-terminal half of Efb (Efb-N) and that the D fragment of Fg is the region that mediates Efb-N binding. More detailed studies of the Efb-N-Fg interactions using ELISA and surface plasmon resonance analyses revealed that Efb-N exhibits a much higher affinity for Fg than typically observed with Fg-binding MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), and data obtained from ELISA analyses using truncated Efb-N constructs demonstrate that Efb-N contains two binding sites located within residues 30-67 and 68-98, respectively. Efb-N inhibits neutrophil adhesion to immobilized Fg by binding to Fg and blocking the interaction of the protein with the leukocyte integrin receptor, α(M)β(2). A motif in the Fg γ chain previously shown to be central to the α(M)β(2) interaction was shown to be functionally distinguishable from the Efb-N binding site, suggesting that the Fg-Efb interaction indirectly impedes Fg engagement by α(M)β(2). Taken together, these studies provide insights into how Efb interacts with Fg and suggest that Efb may support bacterial virulence at least in part by impeding Fg-driven leukocyte adhesion events.

Download full-text

Full-text

Available from: Xiaowen Liang
  • Source
    • "Such an example of a synergistic mode of interaction exists for the extracellular fibrinogen-binding (Efb) protein expressed by Staphylococcus aureus. A disordered N-terminal region of Efb binds directly to human fibrinogen, while a highly basic globular domain originating from the C-terminal region of the protein binds with high affinity to complement component C3848586. Although each molecular interaction individually contributes to virulence, a ternary fibrinogen-Efb-C3b complex can form, encapsulating the bacteria in a 'fibrinogen-shield', which results in direct inhibition of phagocytosis[87]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems.
    Full-text · Article · Jan 2016 · PLoS Pathogens
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylocoagulase and von Willebrand binding protein (VWbp) bind to prothrombin to form the staphylothrombin complex that converts fibrinogen into fibrin. To study the role of staphylothrombin and its inhibition by dabigatran on Staphylococcus aureus virulence. We studied the effect of staphylothrombin inhibition on bacterial attachment to polystyrene surfaces, leukocyte activation and bactericidal activity for S. aureus ATCC 25923, S. aureus Newman, and staphylocoagulase- and VWbp-negative S. aureus Newman mutants in the presence or absence of prothrombin and fibrinogen. We measured the abscess size after subcutaneous (s.c.) injection of S. aureus ATCC 25923 and S. aureus Newman, as well as an S. aureus Newman mutant strain lacking staphylocoagulase and VWbp, in mice treated with either dabigatran or placebo. Staphylothrombin-mediated fibrin increased the association of S. aureus to polystyrene surfaces and reduced the bactericidal activity of leukocytes. The absence or inhibition of staphylothrombin decreased the bacterial association, enhanced leukocyte activation and reduced bacterial survival in vitro. Abscess size was smaller in mice treated with dabigatran or infected with a coagulase-negative mutant. Inhibition or the absence of staphylothrombin reduced S. aureus virulence in in vitro and in vivo models.
    Full-text · Article · Dec 2011 · Journal of Thrombosis and Haemostasis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus is a leading human pathogen that causes a large variety of diseases. In vitro studies have shown that S. aureus secretes several small proteins that block specific elements of the host innate immune system, but their role in bacterial pathogenicity is unknown. For instance, the extracellular complement-binding protein (Ecb) impairs complement activation by binding to the C3d domain of C3. Its homolog, the extracellular fibrinogen-binding protein (Efb), is known to block both complement activation and neutrophil adhesion to fibrinogen. Here, we show that targeted inactivation of the genes encoding Ecb and Efb strongly attenuates S. aureus virulence in a murine infection model: mice experienced significantly higher mortality rates upon intravenous infection with wild-type bacteria (79%) than with an isogenic ΔEcbΔEfb mutant (21%). In addition, Ecb and Efb are both required for staphylococcal persistence in host tissues and abscess formation in the kidneys (27% for wild-type vs. 7% for the ΔEcbΔEfb mutant). During staphylococcal pneumonia, Ecb and Efb together promote bacterial survival in the lungs (p = 0.03) and block neutrophil influx into the lungs. Thus, Ecb and Efb are essential to S. aureus virulence in vivo and could be attractive targets in future vaccine development efforts.
    Full-text · Article · Feb 2012 · Journal of Innate Immunity
Show more