Biochemical properties of Candida parapsilosis ecto-5′-nucleotidase and the possible role of adenosine in macrophage interaction

Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil.
FEMS Microbiology Letters (Impact Factor: 2.12). 04/2011; 317(1):34-42. DOI: 10.1111/j.1574-6968.2011.02216.x
Source: PubMed


Candida parapsilosis is considered to be an emerging fungal pathogen because it is associated with an increasing range of infections. In this work, we biochemically characterized ecto-5'-nucleotidase activity on the surface of living, intact C. parapsilosis cells. At a pH of 4.5, intact cells were able to hydrolyze 5'-AMP at a rate of 52.44 ± 7.01 nmol Pi h(-1) 10(-7) cells. 5'-AMP, 5'-IMP and 5'-UMP were hydrolyzed at similar rates, whereas 5'-GMP and 5'-CMP hydrolyzed at lower rates. Enzyme activity was increased by about 42% with addition of Mg(2+) or Ca(2+), and the optimum pH was in the acidic range. An inhibitor of phosphatase activities, sodium orthovanadate, showed no effect on AMP hydrolysis; however, as expected, ammonium molybdate, a classical nucleotidase inhibitor, inhibited the activity in a dose-dependent manner. The results indicated that the existence of an ecto-5'-nucleotidase could play a role in the control of extracellular nucleotide concentrations.

Download full-text


Available from: Angela H Lopes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work we showed that living cells of Leishmania chagasi was able to hydrolyse 3'AMP 10 times more than 5'AMP. When parasites were grown in a low phosphate concentration (2 mM) the cellular proliferation decreased by 50% compared to cells grown in the presence of a high phosphate concentration (80 mM). However, the ecto-3'nucleotidase activity was 2-fold higher when L. chagasi was grown in a low phosphate concentration. This modulation observed on ecto-3'nucleotidase activity was not observed on ecto-5'nucleotidase activity. These results suggest that low concentration of Pi in the culture medium modulates ecto-3'nucleotidase activity that may lead to modulation of important processes for the cell. Interestingly, the macrophage-parasite interaction increased by 45% when L. chagasi were grown at low phosphate concentration compared to the parasites grown in the presence of high phosphate source. Altogether, the results described here suggest that 3'nucleotidase activity modulated by external stimuli, Pi concentration, could be involved on parasite-macrophage interaction.
    Full-text · Article · Mar 2011 · Experimental Parasitology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ecto-3'-nucleotidase/nuclease (3'NT/NU) is a membrane-bound enzyme that plays a key role in the nutrition of Leishmania sp. protozoan parasites. This enzyme generates nucleosides via hydrolyzes of 3'mononucleotides and nucleic acids, which enter the cell by specific transporters. In this work, we identify and characterize Leishmania amazonensis ecto-3'-nucleotidase activity (La3'-nucleotidase), report ammonium tetrathiomolybdate (TTM) as a novel La3'-nucleotidase inhibitor and approach the possible involvement of ecto-3'-nucleotidase in cellular adhesion. La3'-nucleotidase presented characteristics similar to those reported for the class I single-strand nuclease family; a molecular weight of approximately 40 kDa and optimum activity in an alkaline pH range were observed. Although it is conserved among the genus, La3'-nucleotidase displays different kinetic properties; it can be inhibited by vanadate, molybdate and Cu(2+) ions. Interestingly, ecto-3'-nucleotidase activity is 60-fold higher than that of ecto-5'-nucleotidase in L. amazonensis. Additionally, ecto-3'-nucleotidase activity is two-fold higher in virulent L. amazonensis cells than in avirulent ones. Notably, macrophage-parasite attachment/invasion was increased by 400% in the presence of adenosine 3'-monophosphate (3'AMP); however, this effect was reverted by TTM treatment. We believe that La3'-nucleotidase may play a significant role in the generation of adenosine, which may contribute to mammalian host immune response impairment and establishment of infection.
    Full-text · Article · Jul 2011 · Experimental Parasitology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The enzymatic activities of CD39 and CD73 play strategic roles in calibrating the duration, magnitude, and chemical nature of purinergic signals delivered to immune cells through the conversion of ADP/ATP to AMP and AMP to adenosine, respectively. This drives a shift from an ATP-driven proinflammatory environment to an anti-inflammatory milieu induced by adenosine. The CD39/CD73 pathway changes dynamically with the pathophysiological context in which it is embedded. It is becoming increasingly appreciated that altering this catabolic machinery can change the course or dictate the outcome of several pathophysiological events, such as AIDS, autoimmune diseases, infections, atherosclerosis, ischemia-reperfusion injury, and cancer, suggesting these ectoenzymes are novel therapeutic targets for managing a variety of disorders.
    Full-text · Article · Apr 2013 · Trends in Molecular Medicine
Show more