The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thio redox control

Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
Toxicology (Impact Factor: 3.62). 03/2011; 281(1-3):37-47. DOI: 10.1016/j.tox.2011.01.001
Source: PubMed


Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.

Download full-text


Available from: Charles R Myers, Oct 28, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mode(s)-of-action of the toxic metal chromium has yet to be fully resolved. This Mini review focuses on interactions between chromate and sulfur in biological systems. Cr binds sulfur ligands, with cysteine and glutathione having the capacity to aggravate or ameliorate Cr toxicity. Competition between chromate and sulfate for uptake and in metabolism provokes sulfur starvation, which can be growth limiting. Recent data indicate that sulfur deficiency determines protein damage-related Cr toxicity, due to mRNA mistranslation caused by Cr-induced S limitation. Sulfur deprivation could contribute to additional aspects of Cr toxicity, including oxidative DNA damage and Cr related disease.
    No preview · Article · Aug 2011 · Metallomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present paper centers on mammalian metallothionein 1 and 2 in relationship to cell and tissue injury beginning with its reaction with Cd²⁺ and then considering its role in the toxicology and chemotherapy of both metals and non-metal electrophiles and oxidants. Intertwined is a consideration of MTs role in tumor cell Zn²⁺ metabolism. The paper updates and expands on our recent review by Petering et al. (Met Ions Life Sci 5:353-398, 2009).
    No preview · Article · Aug 2011 · European Journal of Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic administration of high doses of hexavalent chromium [Cr(VI)] as sodium dichromate dihydrate (SDD) elicits alimentary cancers in mice. To further elucidate key events underlying tumor formation, a 90-day drinking water study was conducted in B6C3F1 mice. Differential gene expression was examined in duodenal and jejunal epithelial samples following 7 or 90days of exposure to 0, 0.3, 4, 14, 60, 170 or 520mg/L SDD in drinking water. Genome-wide microarray analyses identified 6562 duodenal and 4448 jejunal unique differentially expressed genes at day 8, and 4630 and 4845 unique changes, respectively, in the duodenum and jejunum at day 91. Comparative analysis identified significant overlap in duodenal and jejunal differential gene expression. Automated dose-response modeling identified >80% of the differentially expressed genes exhibited sigmoidal dose-response curves with EC(50) values ranging from 10 to 100mg/L SDD. Only 16 genes satisfying the dose-dependent differential expression criteria had EC(50) values <10mg/L SDD, 3 of which were regulated by Nrf2, suggesting oxidative stress in response to SDD at low concentrations. Analyses of differentially expressed genes identified over-represented functions associated with oxidative stress, cell cycle, lipid metabolism, and immune responses consistent with the reported effects on redox status and histopathology at corresponding SDD drinking water concentrations. Collectively, these data are consistent with a mode of action involving oxidative stress and cytotoxicity as early key events. This suggests that the tumorigenic effects of chronic Cr(VI) oral exposure likely require chronic tissue damage and compensatory epithelial cell proliferation.
    Full-text · Article · Dec 2011 · Toxicology and Applied Pharmacology
Show more